Spectral Theory of Differential Operators: Self-Adjoint Differential Operators
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1995
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this fully-illustrated textbook, the author examines the spectral theory of self-adjoint elliptic operators. Chapters focus on the problems of convergence and summability of spectral decompositions about the fundamental functions of elliptic operators of the second order. The author's work offers a novel method for estimation of the remainder term of a spectral function and its Riesz means without recourse to the traditional Carleman technique and Tauberian theorem apparatus |
Beschreibung: | 1 Online-Ressource (XII, 390 p) |
ISBN: | 9781461517559 9780306110375 |
DOI: | 10.1007/978-1-4615-1755-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420861 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461517559 |c Online |9 978-1-4615-1755-9 | ||
020 | |a 9780306110375 |c Print |9 978-0-306-11037-5 | ||
024 | 7 | |a 10.1007/978-1-4615-1755-9 |2 doi | |
035 | |a (OCoLC)1184264392 | ||
035 | |a (DE-599)BVBBV042420861 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Il’in, V. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral Theory of Differential Operators |b Self-Adjoint Differential Operators |c by V. A. Il’in |
264 | 1 | |a Boston, MA |b Springer US |c 1995 | |
300 | |a 1 Online-Ressource (XII, 390 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a In this fully-illustrated textbook, the author examines the spectral theory of self-adjoint elliptic operators. Chapters focus on the problems of convergence and summability of spectral decompositions about the fundamental functions of elliptic operators of the second order. The author's work offers a novel method for estimation of the remainder term of a spectral function and its Riesz means without recourse to the traditional Carleman technique and Tauberian theorem apparatus | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 0 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-1755-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856278 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093273681920 |
---|---|
any_adam_object | |
author | Il’in, V. A. |
author_facet | Il’in, V. A. |
author_role | aut |
author_sort | Il’in, V. A. |
author_variant | v a i va vai |
building | Verbundindex |
bvnumber | BV042420861 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184264392 (DE-599)BVBBV042420861 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-1755-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02065nmm a2200457zc 4500</leader><controlfield tag="001">BV042420861</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461517559</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-1755-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306110375</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-306-11037-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-1755-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184264392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420861</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Il’in, V. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral Theory of Differential Operators</subfield><subfield code="b">Self-Adjoint Differential Operators</subfield><subfield code="c">by V. A. Il’in</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 390 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this fully-illustrated textbook, the author examines the spectral theory of self-adjoint elliptic operators. Chapters focus on the problems of convergence and summability of spectral decompositions about the fundamental functions of elliptic operators of the second order. The author's work offers a novel method for estimation of the remainder term of a spectral function and its Riesz means without recourse to the traditional Carleman technique and Tauberian theorem apparatus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-1755-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856278</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420861 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461517559 9780306110375 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856278 |
oclc_num | 1184264392 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 390 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer US |
record_format | marc |
spelling | Il’in, V. A. Verfasser aut Spectral Theory of Differential Operators Self-Adjoint Differential Operators by V. A. Il’in Boston, MA Springer US 1995 1 Online-Ressource (XII, 390 p) txt rdacontent c rdamedia cr rdacarrier In this fully-illustrated textbook, the author examines the spectral theory of self-adjoint elliptic operators. Chapters focus on the problems of convergence and summability of spectral decompositions about the fundamental functions of elliptic operators of the second order. The author's work offers a novel method for estimation of the remainder term of a spectral function and its Riesz means without recourse to the traditional Carleman technique and Tauberian theorem apparatus Mathematics Mathematics, general Mathematik Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Differentialoperator (DE-588)4012251-7 gnd rswk-swf Differentialoperator (DE-588)4012251-7 s Spektraltheorie (DE-588)4116561-5 s 1\p DE-604 https://doi.org/10.1007/978-1-4615-1755-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Il’in, V. A. Spectral Theory of Differential Operators Self-Adjoint Differential Operators Mathematics Mathematics, general Mathematik Spektraltheorie (DE-588)4116561-5 gnd Differentialoperator (DE-588)4012251-7 gnd |
subject_GND | (DE-588)4116561-5 (DE-588)4012251-7 |
title | Spectral Theory of Differential Operators Self-Adjoint Differential Operators |
title_auth | Spectral Theory of Differential Operators Self-Adjoint Differential Operators |
title_exact_search | Spectral Theory of Differential Operators Self-Adjoint Differential Operators |
title_full | Spectral Theory of Differential Operators Self-Adjoint Differential Operators by V. A. Il’in |
title_fullStr | Spectral Theory of Differential Operators Self-Adjoint Differential Operators by V. A. Il’in |
title_full_unstemmed | Spectral Theory of Differential Operators Self-Adjoint Differential Operators by V. A. Il’in |
title_short | Spectral Theory of Differential Operators |
title_sort | spectral theory of differential operators self adjoint differential operators |
title_sub | Self-Adjoint Differential Operators |
topic | Mathematics Mathematics, general Mathematik Spektraltheorie (DE-588)4116561-5 gnd Differentialoperator (DE-588)4012251-7 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Spektraltheorie Differentialoperator |
url | https://doi.org/10.1007/978-1-4615-1755-9 |
work_keys_str_mv | AT ilinva spectraltheoryofdifferentialoperatorsselfadjointdifferentialoperators |