Topology of Real Algebraic Sets:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1992
|
Schriftenreihe: | Mathematical Sciences Research Institute Publications
25 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the Fall of 1975 we started a joint project with the ultimate goal of topo logically classifying real algebraic sets. This has been a long happy collaboration (c.f., [K2)). In 1985 while visiting M.S.R.1. we organized and presented our classification results up to that point in the M.S.R.1. preprint series [AK14] -[AK17]. Since these results are interdependent and require some prerequisites as well as familiarity with real algebraic geometry, we decided to make them self contained by presenting them as a part of a book in real algebraic geometry. Even though we have not arrived to our final goal yet we feel that it is time to introduce them in a self contained coherent version and demonstrate their use by giving some applications. Chapter I gives the overview of the classification program. Chapter II has all the necessary background for the rest of the book, which therefore can be used as a course in real algebraic geometry. It starts with the elementary properties of real algebraic sets and ends with the recent solution of the Nash Conjecture. Chapter III and Chapter IV develop the theory of resolution towers. Resolution towers are basic topologically defined objects generalizing the notion of manifold |
Beschreibung: | 1 Online-Ressource (X, 249p. 63 illus) |
ISBN: | 9781461397397 9781461397410 |
ISSN: | 0940-4740 |
DOI: | 10.1007/978-1-4613-9739-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420829 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781461397397 |c Online |9 978-1-4613-9739-7 | ||
020 | |a 9781461397410 |c Print |9 978-1-4613-9741-0 | ||
024 | 7 | |a 10.1007/978-1-4613-9739-7 |2 doi | |
035 | |a (OCoLC)863816171 | ||
035 | |a (DE-599)BVBBV042420829 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Akbulut, Selman |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topology of Real Algebraic Sets |c by Selman Akbulut, Henry King |
264 | 1 | |a New York, NY |b Springer New York |c 1992 | |
300 | |a 1 Online-Ressource (X, 249p. 63 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematical Sciences Research Institute Publications |v 25 |x 0940-4740 | |
500 | |a In the Fall of 1975 we started a joint project with the ultimate goal of topo logically classifying real algebraic sets. This has been a long happy collaboration (c.f., [K2)). In 1985 while visiting M.S.R.1. we organized and presented our classification results up to that point in the M.S.R.1. preprint series [AK14] -[AK17]. Since these results are interdependent and require some prerequisites as well as familiarity with real algebraic geometry, we decided to make them self contained by presenting them as a part of a book in real algebraic geometry. Even though we have not arrived to our final goal yet we feel that it is time to introduce them in a self contained coherent version and demonstrate their use by giving some applications. Chapter I gives the overview of the classification program. Chapter II has all the necessary background for the rest of the book, which therefore can be used as a course in real algebraic geometry. It starts with the elementary properties of real algebraic sets and ends with the recent solution of the Nash Conjecture. Chapter III and Chapter IV develop the theory of resolution towers. Resolution towers are basic topologically defined objects generalizing the notion of manifold | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Menge |0 (DE-588)4141840-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geordneter Körper |0 (DE-588)4156751-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reelle algebraische Geometrie |0 (DE-588)4192004-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Menge |0 (DE-588)4141840-2 |D s |
689 | 0 | 1 | |a Reelle algebraische Geometrie |0 (DE-588)4192004-1 |D s |
689 | 0 | 2 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Geordneter Körper |0 (DE-588)4156751-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a King, Henry |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-9739-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856246 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093218107392 |
---|---|
any_adam_object | |
author | Akbulut, Selman |
author_facet | Akbulut, Selman |
author_role | aut |
author_sort | Akbulut, Selman |
author_variant | s a sa |
building | Verbundindex |
bvnumber | BV042420829 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863816171 (DE-599)BVBBV042420829 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-9739-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03646nmm a2200637zcb4500</leader><controlfield tag="001">BV042420829</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461397397</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-9739-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461397410</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-9741-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-9739-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863816171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420829</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akbulut, Selman</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology of Real Algebraic Sets</subfield><subfield code="c">by Selman Akbulut, Henry King</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 249p. 63 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical Sciences Research Institute Publications</subfield><subfield code="v">25</subfield><subfield code="x">0940-4740</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the Fall of 1975 we started a joint project with the ultimate goal of topo logically classifying real algebraic sets. This has been a long happy collaboration (c.f., [K2)). In 1985 while visiting M.S.R.1. we organized and presented our classification results up to that point in the M.S.R.1. preprint series [AK14] -[AK17]. Since these results are interdependent and require some prerequisites as well as familiarity with real algebraic geometry, we decided to make them self contained by presenting them as a part of a book in real algebraic geometry. Even though we have not arrived to our final goal yet we feel that it is time to introduce them in a self contained coherent version and demonstrate their use by giving some applications. Chapter I gives the overview of the classification program. Chapter II has all the necessary background for the rest of the book, which therefore can be used as a course in real algebraic geometry. It starts with the elementary properties of real algebraic sets and ends with the recent solution of the Nash Conjecture. Chapter III and Chapter IV develop the theory of resolution towers. Resolution towers are basic topologically defined objects generalizing the notion of manifold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Menge</subfield><subfield code="0">(DE-588)4141840-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geordneter Körper</subfield><subfield code="0">(DE-588)4156751-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle algebraische Geometrie</subfield><subfield code="0">(DE-588)4192004-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Menge</subfield><subfield code="0">(DE-588)4141840-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Reelle algebraische Geometrie</subfield><subfield code="0">(DE-588)4192004-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geordneter Körper</subfield><subfield code="0">(DE-588)4156751-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">King, Henry</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-9739-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856246</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420829 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461397397 9781461397410 |
issn | 0940-4740 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856246 |
oclc_num | 863816171 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 249p. 63 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer New York |
record_format | marc |
series2 | Mathematical Sciences Research Institute Publications |
spelling | Akbulut, Selman Verfasser aut Topology of Real Algebraic Sets by Selman Akbulut, Henry King New York, NY Springer New York 1992 1 Online-Ressource (X, 249p. 63 illus) txt rdacontent c rdamedia cr rdacarrier Mathematical Sciences Research Institute Publications 25 0940-4740 In the Fall of 1975 we started a joint project with the ultimate goal of topo logically classifying real algebraic sets. This has been a long happy collaboration (c.f., [K2)). In 1985 while visiting M.S.R.1. we organized and presented our classification results up to that point in the M.S.R.1. preprint series [AK14] -[AK17]. Since these results are interdependent and require some prerequisites as well as familiarity with real algebraic geometry, we decided to make them self contained by presenting them as a part of a book in real algebraic geometry. Even though we have not arrived to our final goal yet we feel that it is time to introduce them in a self contained coherent version and demonstrate their use by giving some applications. Chapter I gives the overview of the classification program. Chapter II has all the necessary background for the rest of the book, which therefore can be used as a course in real algebraic geometry. It starts with the elementary properties of real algebraic sets and ends with the recent solution of the Nash Conjecture. Chapter III and Chapter IV develop the theory of resolution towers. Resolution towers are basic topologically defined objects generalizing the notion of manifold Mathematics Geometry, algebraic Algebraic topology Algebraic Geometry Algebraic Topology Mathematik Algebraische Menge (DE-588)4141840-2 gnd rswk-swf Geordneter Körper (DE-588)4156751-1 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Reelle algebraische Geometrie (DE-588)4192004-1 gnd rswk-swf Algebraische Menge (DE-588)4141840-2 s Reelle algebraische Geometrie (DE-588)4192004-1 s Topologie (DE-588)4060425-1 s 1\p DE-604 Geordneter Körper (DE-588)4156751-1 s 2\p DE-604 Algebraische Geometrie (DE-588)4001161-6 s 3\p DE-604 King, Henry Sonstige oth https://doi.org/10.1007/978-1-4613-9739-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Akbulut, Selman Topology of Real Algebraic Sets Mathematics Geometry, algebraic Algebraic topology Algebraic Geometry Algebraic Topology Mathematik Algebraische Menge (DE-588)4141840-2 gnd Geordneter Körper (DE-588)4156751-1 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Topologie (DE-588)4060425-1 gnd Reelle algebraische Geometrie (DE-588)4192004-1 gnd |
subject_GND | (DE-588)4141840-2 (DE-588)4156751-1 (DE-588)4001161-6 (DE-588)4060425-1 (DE-588)4192004-1 |
title | Topology of Real Algebraic Sets |
title_auth | Topology of Real Algebraic Sets |
title_exact_search | Topology of Real Algebraic Sets |
title_full | Topology of Real Algebraic Sets by Selman Akbulut, Henry King |
title_fullStr | Topology of Real Algebraic Sets by Selman Akbulut, Henry King |
title_full_unstemmed | Topology of Real Algebraic Sets by Selman Akbulut, Henry King |
title_short | Topology of Real Algebraic Sets |
title_sort | topology of real algebraic sets |
topic | Mathematics Geometry, algebraic Algebraic topology Algebraic Geometry Algebraic Topology Mathematik Algebraische Menge (DE-588)4141840-2 gnd Geordneter Körper (DE-588)4156751-1 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Topologie (DE-588)4060425-1 gnd Reelle algebraische Geometrie (DE-588)4192004-1 gnd |
topic_facet | Mathematics Geometry, algebraic Algebraic topology Algebraic Geometry Algebraic Topology Mathematik Algebraische Menge Geordneter Körper Algebraische Geometrie Topologie Reelle algebraische Geometrie |
url | https://doi.org/10.1007/978-1-4613-9739-7 |
work_keys_str_mv | AT akbulutselman topologyofrealalgebraicsets AT kinghenry topologyofrealalgebraicsets |