The Multivariate Normal Distribution:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1990
|
Schriftenreihe: | Springer Series in Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The multivariate normal distribution has played a predominant role in the historical development of statistical theory, and has made its appearance in various areas of applications. Although many of the results concerning the multivariate normal distribution are classical, there are important new results which have been reported recently in the literature but cannot be found in most books on multivariate analysis. These results are often obtained by showing that the multivariate normal density function belongs to certain large families of density functions. Thus, useful properties of such families immediately hold for the multivariate normal distribution. This book attempts to provide a comprehensive and coherent treatment of the classical and new results related to the multivariate normal distribution. The material is organized in a unified modern approach, and the main themes are dependence, probability inequalities, and their roles in theory and applications. Some general properties of a multivariate normal density function are discussed, and results that follow from these properties are reviewed extensively. The coverage is, to some extent, a matter of taste and is not intended to be exhaustive, thus more attention is focused on a systematic presentation of results rather than on a complete listing of them |
Beschreibung: | 1 Online-Ressource (XIII, 271p) |
ISBN: | 9781461396550 9781461396574 |
ISSN: | 0172-7397 |
DOI: | 10.1007/978-1-4613-9655-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420819 | ||
003 | DE-604 | ||
005 | 20180115 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9781461396550 |c Online |9 978-1-4613-9655-0 | ||
020 | |a 9781461396574 |c Print |9 978-1-4613-9657-4 | ||
024 | 7 | |a 10.1007/978-1-4613-9655-0 |2 doi | |
035 | |a (OCoLC)863813413 | ||
035 | |a (DE-599)BVBBV042420819 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 330.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Tong, Y. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Multivariate Normal Distribution |c by Y. L. Tong |
264 | 1 | |a New York, NY |b Springer New York |c 1990 | |
300 | |a 1 Online-Ressource (XIII, 271p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Statistics |x 0172-7397 | |
500 | |a The multivariate normal distribution has played a predominant role in the historical development of statistical theory, and has made its appearance in various areas of applications. Although many of the results concerning the multivariate normal distribution are classical, there are important new results which have been reported recently in the literature but cannot be found in most books on multivariate analysis. These results are often obtained by showing that the multivariate normal density function belongs to certain large families of density functions. Thus, useful properties of such families immediately hold for the multivariate normal distribution. This book attempts to provide a comprehensive and coherent treatment of the classical and new results related to the multivariate normal distribution. The material is organized in a unified modern approach, and the main themes are dependence, probability inequalities, and their roles in theory and applications. Some general properties of a multivariate normal density function are discussed, and results that follow from these properties are reviewed extensively. The coverage is, to some extent, a matter of taste and is not intended to be exhaustive, thus more attention is focused on a systematic presentation of results rather than on a complete listing of them | ||
650 | 4 | |a Economics | |
650 | 4 | |a Economics/Management Science | |
650 | 4 | |a Economic Theory | |
650 | 4 | |a Management | |
650 | 4 | |a Wirtschaft | |
650 | 0 | 7 | |a Multivariate Analyse |0 (DE-588)4040708-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Normalverteilung |0 (DE-588)4075494-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multivariate Normalverteilung |0 (DE-588)4227589-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Häufigkeitsverteilung |0 (DE-588)4158707-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Multivariate Analyse |0 (DE-588)4040708-1 |D s |
689 | 0 | 1 | |a Normalverteilung |0 (DE-588)4075494-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Häufigkeitsverteilung |0 (DE-588)4158707-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Multivariate Normalverteilung |0 (DE-588)4227589-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-9655-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856236 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093181407232 |
---|---|
any_adam_object | |
author | Tong, Y. L. |
author_facet | Tong, Y. L. |
author_role | aut |
author_sort | Tong, Y. L. |
author_variant | y l t yl ylt |
building | Verbundindex |
bvnumber | BV042420819 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863813413 (DE-599)BVBBV042420819 |
dewey-full | 330.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.1 |
dewey-search | 330.1 |
dewey-sort | 3330.1 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-1-4613-9655-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03513nmm a2200589zc 4500</leader><controlfield tag="001">BV042420819</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180115 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461396550</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-9655-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461396574</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-9657-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-9655-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863813413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420819</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tong, Y. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Multivariate Normal Distribution</subfield><subfield code="c">by Y. L. Tong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 271p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Statistics</subfield><subfield code="x">0172-7397</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The multivariate normal distribution has played a predominant role in the historical development of statistical theory, and has made its appearance in various areas of applications. Although many of the results concerning the multivariate normal distribution are classical, there are important new results which have been reported recently in the literature but cannot be found in most books on multivariate analysis. These results are often obtained by showing that the multivariate normal density function belongs to certain large families of density functions. Thus, useful properties of such families immediately hold for the multivariate normal distribution. This book attempts to provide a comprehensive and coherent treatment of the classical and new results related to the multivariate normal distribution. The material is organized in a unified modern approach, and the main themes are dependence, probability inequalities, and their roles in theory and applications. Some general properties of a multivariate normal density function are discussed, and results that follow from these properties are reviewed extensively. The coverage is, to some extent, a matter of taste and is not intended to be exhaustive, thus more attention is focused on a systematic presentation of results rather than on a complete listing of them</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics/Management Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Normalverteilung</subfield><subfield code="0">(DE-588)4075494-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Normalverteilung</subfield><subfield code="0">(DE-588)4227589-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Häufigkeitsverteilung</subfield><subfield code="0">(DE-588)4158707-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Normalverteilung</subfield><subfield code="0">(DE-588)4075494-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Häufigkeitsverteilung</subfield><subfield code="0">(DE-588)4158707-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Multivariate Normalverteilung</subfield><subfield code="0">(DE-588)4227589-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-9655-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856236</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420819 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461396550 9781461396574 |
issn | 0172-7397 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856236 |
oclc_num | 863813413 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 271p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Series in Statistics |
spelling | Tong, Y. L. Verfasser aut The Multivariate Normal Distribution by Y. L. Tong New York, NY Springer New York 1990 1 Online-Ressource (XIII, 271p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Statistics 0172-7397 The multivariate normal distribution has played a predominant role in the historical development of statistical theory, and has made its appearance in various areas of applications. Although many of the results concerning the multivariate normal distribution are classical, there are important new results which have been reported recently in the literature but cannot be found in most books on multivariate analysis. These results are often obtained by showing that the multivariate normal density function belongs to certain large families of density functions. Thus, useful properties of such families immediately hold for the multivariate normal distribution. This book attempts to provide a comprehensive and coherent treatment of the classical and new results related to the multivariate normal distribution. The material is organized in a unified modern approach, and the main themes are dependence, probability inequalities, and their roles in theory and applications. Some general properties of a multivariate normal density function are discussed, and results that follow from these properties are reviewed extensively. The coverage is, to some extent, a matter of taste and is not intended to be exhaustive, thus more attention is focused on a systematic presentation of results rather than on a complete listing of them Economics Economics/Management Science Economic Theory Management Wirtschaft Multivariate Analyse (DE-588)4040708-1 gnd rswk-swf Normalverteilung (DE-588)4075494-7 gnd rswk-swf Multivariate Normalverteilung (DE-588)4227589-1 gnd rswk-swf Häufigkeitsverteilung (DE-588)4158707-8 gnd rswk-swf Multivariate Analyse (DE-588)4040708-1 s Normalverteilung (DE-588)4075494-7 s 1\p DE-604 Häufigkeitsverteilung (DE-588)4158707-8 s 2\p DE-604 Multivariate Normalverteilung (DE-588)4227589-1 s 3\p DE-604 https://doi.org/10.1007/978-1-4613-9655-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tong, Y. L. The Multivariate Normal Distribution Economics Economics/Management Science Economic Theory Management Wirtschaft Multivariate Analyse (DE-588)4040708-1 gnd Normalverteilung (DE-588)4075494-7 gnd Multivariate Normalverteilung (DE-588)4227589-1 gnd Häufigkeitsverteilung (DE-588)4158707-8 gnd |
subject_GND | (DE-588)4040708-1 (DE-588)4075494-7 (DE-588)4227589-1 (DE-588)4158707-8 |
title | The Multivariate Normal Distribution |
title_auth | The Multivariate Normal Distribution |
title_exact_search | The Multivariate Normal Distribution |
title_full | The Multivariate Normal Distribution by Y. L. Tong |
title_fullStr | The Multivariate Normal Distribution by Y. L. Tong |
title_full_unstemmed | The Multivariate Normal Distribution by Y. L. Tong |
title_short | The Multivariate Normal Distribution |
title_sort | the multivariate normal distribution |
topic | Economics Economics/Management Science Economic Theory Management Wirtschaft Multivariate Analyse (DE-588)4040708-1 gnd Normalverteilung (DE-588)4075494-7 gnd Multivariate Normalverteilung (DE-588)4227589-1 gnd Häufigkeitsverteilung (DE-588)4158707-8 gnd |
topic_facet | Economics Economics/Management Science Economic Theory Management Wirtschaft Multivariate Analyse Normalverteilung Multivariate Normalverteilung Häufigkeitsverteilung |
url | https://doi.org/10.1007/978-1-4613-9655-0 |
work_keys_str_mv | AT tongyl themultivariatenormaldistribution |