Heat Conduction Within Linear Thermoelasticity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1985
|
Schriftenreihe: | Springer Tracts in Natural Philosophy
30 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | J-B. J. FOURIER'S immensely influential treatise Theorie Analytique de la Chaleur [21J, and the subsequent developments and refinements of FOURIER's ideas and methods at the hands of many authors, provide a highly successful theory of heat conduction. According to that theory, the growth or decay of the temperature e in a conducting body is governed by the heat equation, that is, by the parabolic partial differential equation Such has been the influence of FOURIER'S theory, which must forever remain the classical theory in that it sets the standard against which all other theories are to be measured, that the mathematical investigation of heat conduction has come to be regarded as being almost identicalt with the study of the heat equation, and the reader will not need to be reminded that intensive analytical study has t But not entirely; witness, for example, those theories which would replace the heat equation by an equation which implies a finite speed of propagation for the temperature. The reader is referred to the article [9] of COLEMAN, FABRIZIO, and OWEN for the derivation of such an equation from modern Continuum Thermody namics and for references to earlier work in this direction. viii Introduction amply demonstrated that the heat equation enjoys many properties of great interest and elegance |
Beschreibung: | 1 Online-Ressource (VIII, 84 p) |
ISBN: | 9781461395553 9781461395577 |
ISSN: | 0081-3877 |
DOI: | 10.1007/978-1-4613-9555-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420801 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1985 |||| o||u| ||||||eng d | ||
020 | |a 9781461395553 |c Online |9 978-1-4613-9555-3 | ||
020 | |a 9781461395577 |c Print |9 978-1-4613-9557-7 | ||
024 | 7 | |a 10.1007/978-1-4613-9555-3 |2 doi | |
035 | |a (OCoLC)1165500605 | ||
035 | |a (DE-599)BVBBV042420801 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 536.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Day, William Alan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Heat Conduction Within Linear Thermoelasticity |c by William Alan Day |
264 | 1 | |a New York, NY |b Springer New York |c 1985 | |
300 | |a 1 Online-Ressource (VIII, 84 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Tracts in Natural Philosophy |v 30 |x 0081-3877 | |
500 | |a J-B. J. FOURIER'S immensely influential treatise Theorie Analytique de la Chaleur [21J, and the subsequent developments and refinements of FOURIER's ideas and methods at the hands of many authors, provide a highly successful theory of heat conduction. According to that theory, the growth or decay of the temperature e in a conducting body is governed by the heat equation, that is, by the parabolic partial differential equation Such has been the influence of FOURIER'S theory, which must forever remain the classical theory in that it sets the standard against which all other theories are to be measured, that the mathematical investigation of heat conduction has come to be regarded as being almost identicalt with the study of the heat equation, and the reader will not need to be reminded that intensive analytical study has t But not entirely; witness, for example, those theories which would replace the heat equation by an equation which implies a finite speed of propagation for the temperature. The reader is referred to the article [9] of COLEMAN, FABRIZIO, and OWEN for the derivation of such an equation from modern Continuum Thermody namics and for references to earlier work in this direction. viii Introduction amply demonstrated that the heat equation enjoys many properties of great interest and elegance | ||
650 | 4 | |a Physics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Analysis | |
650 | 0 | 7 | |a Thermoelastizität |0 (DE-588)4185143-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmeleitungsgleichung |0 (DE-588)4188859-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wärmeleitungsgleichung |0 (DE-588)4188859-5 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 2 | |a Thermoelastizität |0 (DE-588)4185143-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-9555-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856218 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093135269888 |
---|---|
any_adam_object | |
author | Day, William Alan |
author_facet | Day, William Alan |
author_role | aut |
author_sort | Day, William Alan |
author_variant | w a d wa wad |
building | Verbundindex |
bvnumber | BV042420801 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165500605 (DE-599)BVBBV042420801 |
dewey-full | 536.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536.7 |
dewey-search | 536.7 |
dewey-sort | 3536.7 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4613-9555-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03207nmm a2200517zcb4500</leader><controlfield tag="001">BV042420801</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461395553</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-9555-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461395577</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-9557-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-9555-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165500605</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420801</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Day, William Alan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat Conduction Within Linear Thermoelasticity</subfield><subfield code="c">by William Alan Day</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 84 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Tracts in Natural Philosophy</subfield><subfield code="v">30</subfield><subfield code="x">0081-3877</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">J-B. J. FOURIER'S immensely influential treatise Theorie Analytique de la Chaleur [21J, and the subsequent developments and refinements of FOURIER's ideas and methods at the hands of many authors, provide a highly successful theory of heat conduction. According to that theory, the growth or decay of the temperature e in a conducting body is governed by the heat equation, that is, by the parabolic partial differential equation Such has been the influence of FOURIER'S theory, which must forever remain the classical theory in that it sets the standard against which all other theories are to be measured, that the mathematical investigation of heat conduction has come to be regarded as being almost identicalt with the study of the heat equation, and the reader will not need to be reminded that intensive analytical study has t But not entirely; witness, for example, those theories which would replace the heat equation by an equation which implies a finite speed of propagation for the temperature. The reader is referred to the article [9] of COLEMAN, FABRIZIO, and OWEN for the derivation of such an equation from modern Continuum Thermody namics and for references to earlier work in this direction. viii Introduction amply demonstrated that the heat equation enjoys many properties of great interest and elegance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermoelastizität</subfield><subfield code="0">(DE-588)4185143-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeleitungsgleichung</subfield><subfield code="0">(DE-588)4188859-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wärmeleitungsgleichung</subfield><subfield code="0">(DE-588)4188859-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Thermoelastizität</subfield><subfield code="0">(DE-588)4185143-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-9555-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856218</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420801 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461395553 9781461395577 |
issn | 0081-3877 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856218 |
oclc_num | 1165500605 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 84 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Tracts in Natural Philosophy |
spelling | Day, William Alan Verfasser aut Heat Conduction Within Linear Thermoelasticity by William Alan Day New York, NY Springer New York 1985 1 Online-Ressource (VIII, 84 p) txt rdacontent c rdamedia cr rdacarrier Springer Tracts in Natural Philosophy 30 0081-3877 J-B. J. FOURIER'S immensely influential treatise Theorie Analytique de la Chaleur [21J, and the subsequent developments and refinements of FOURIER's ideas and methods at the hands of many authors, provide a highly successful theory of heat conduction. According to that theory, the growth or decay of the temperature e in a conducting body is governed by the heat equation, that is, by the parabolic partial differential equation Such has been the influence of FOURIER'S theory, which must forever remain the classical theory in that it sets the standard against which all other theories are to be measured, that the mathematical investigation of heat conduction has come to be regarded as being almost identicalt with the study of the heat equation, and the reader will not need to be reminded that intensive analytical study has t But not entirely; witness, for example, those theories which would replace the heat equation by an equation which implies a finite speed of propagation for the temperature. The reader is referred to the article [9] of COLEMAN, FABRIZIO, and OWEN for the derivation of such an equation from modern Continuum Thermody namics and for references to earlier work in this direction. viii Introduction amply demonstrated that the heat equation enjoys many properties of great interest and elegance Physics Global analysis (Mathematics) Thermodynamics Theoretical, Mathematical and Computational Physics Analysis Thermoelastizität (DE-588)4185143-2 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Wärmeleitungsgleichung (DE-588)4188859-5 gnd rswk-swf Wärmeleitungsgleichung (DE-588)4188859-5 s Numerisches Verfahren (DE-588)4128130-5 s Thermoelastizität (DE-588)4185143-2 s 1\p DE-604 https://doi.org/10.1007/978-1-4613-9555-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Day, William Alan Heat Conduction Within Linear Thermoelasticity Physics Global analysis (Mathematics) Thermodynamics Theoretical, Mathematical and Computational Physics Analysis Thermoelastizität (DE-588)4185143-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Wärmeleitungsgleichung (DE-588)4188859-5 gnd |
subject_GND | (DE-588)4185143-2 (DE-588)4128130-5 (DE-588)4188859-5 |
title | Heat Conduction Within Linear Thermoelasticity |
title_auth | Heat Conduction Within Linear Thermoelasticity |
title_exact_search | Heat Conduction Within Linear Thermoelasticity |
title_full | Heat Conduction Within Linear Thermoelasticity by William Alan Day |
title_fullStr | Heat Conduction Within Linear Thermoelasticity by William Alan Day |
title_full_unstemmed | Heat Conduction Within Linear Thermoelasticity by William Alan Day |
title_short | Heat Conduction Within Linear Thermoelasticity |
title_sort | heat conduction within linear thermoelasticity |
topic | Physics Global analysis (Mathematics) Thermodynamics Theoretical, Mathematical and Computational Physics Analysis Thermoelastizität (DE-588)4185143-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Wärmeleitungsgleichung (DE-588)4188859-5 gnd |
topic_facet | Physics Global analysis (Mathematics) Thermodynamics Theoretical, Mathematical and Computational Physics Analysis Thermoelastizität Numerisches Verfahren Wärmeleitungsgleichung |
url | https://doi.org/10.1007/978-1-4613-9555-3 |
work_keys_str_mv | AT daywilliamalan heatconductionwithinlinearthermoelasticity |