Bieberbach Groups and Flat Manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1986
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Many mathematics books suffer from schizophrenia, and this is yet another. On the one hand it tries to be a reference for the basic results on flat riemannian manifolds. On the other hand it attempts to be a textbook which can be used for a second year graduate course. My aim was to keep the second personality dominant, but the reference persona kept breaking out especially at the end of sections in the form of remarks that contain more advanced material. To satisfy this reference persona, I'll begin by telling you a little about the subject matter of the book, and then I'll talk about the textbook aspect. A flat riemannian manifold is a space in which you can talk about geometry (e. g. distance, angle, curvature, "straight lines," etc. ) and, in addition, the geometry is locally the one we all know and love, namely euclidean geometry. This means that near any point of this space one can introduce coordinates so that with respect to these coordinates, the rules of euclidean geometry hold. These coordinates are not valid in the entire space, so you can't conclude the space is euclidean space itself. In this book we are mainly concerned with compact flat riemannian manifolds, and unless we say otherwise, we use the term "flat manifold" to mean "compact flat riemannian manifold. " It turns out that the most important invariant for flat manifolds is the fundamental group |
Beschreibung: | 1 Online-Ressource (XIII, 242p) |
ISBN: | 9781461386872 9780387963952 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4613-8687-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420741 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1986 |||| o||u| ||||||eng d | ||
020 | |a 9781461386872 |c Online |9 978-1-4613-8687-2 | ||
020 | |a 9780387963952 |c Print |9 978-0-387-96395-2 | ||
024 | 7 | |a 10.1007/978-1-4613-8687-2 |2 doi | |
035 | |a (OCoLC)863786996 | ||
035 | |a (DE-599)BVBBV042420741 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Charlap, Leonard S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bieberbach Groups and Flat Manifolds |c by Leonard S. Charlap |
264 | 1 | |a New York, NY |b Springer New York |c 1986 | |
300 | |a 1 Online-Ressource (XIII, 242p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a Many mathematics books suffer from schizophrenia, and this is yet another. On the one hand it tries to be a reference for the basic results on flat riemannian manifolds. On the other hand it attempts to be a textbook which can be used for a second year graduate course. My aim was to keep the second personality dominant, but the reference persona kept breaking out especially at the end of sections in the form of remarks that contain more advanced material. To satisfy this reference persona, I'll begin by telling you a little about the subject matter of the book, and then I'll talk about the textbook aspect. A flat riemannian manifold is a space in which you can talk about geometry (e. g. distance, angle, curvature, "straight lines," etc. ) and, in addition, the geometry is locally the one we all know and love, namely euclidean geometry. This means that near any point of this space one can introduce coordinates so that with respect to these coordinates, the rules of euclidean geometry hold. These coordinates are not valid in the entire space, so you can't conclude the space is euclidean space itself. In this book we are mainly concerned with compact flat riemannian manifolds, and unless we say otherwise, we use the term "flat manifold" to mean "compact flat riemannian manifold. " It turns out that the most important invariant for flat manifolds is the fundamental group | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Flache Mannigfaltigkeit |0 (DE-588)4300461-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bieberbach-Gruppe |0 (DE-588)4128293-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automorphe Funktion |0 (DE-588)4143706-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |D s |
689 | 0 | 1 | |a Bieberbach-Gruppe |0 (DE-588)4128293-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 1 | 1 | |a Bieberbach-Gruppe |0 (DE-588)4128293-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Flache Mannigfaltigkeit |0 (DE-588)4300461-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Automorphe Funktion |0 (DE-588)4143706-8 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-8687-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856158 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093005246464 |
---|---|
any_adam_object | |
author | Charlap, Leonard S. |
author_facet | Charlap, Leonard S. |
author_role | aut |
author_sort | Charlap, Leonard S. |
author_variant | l s c ls lsc |
building | Verbundindex |
bvnumber | BV042420741 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863786996 (DE-599)BVBBV042420741 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-8687-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04164nmm a2200709zc 4500</leader><controlfield tag="001">BV042420741</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461386872</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-8687-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387963952</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-96395-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-8687-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863786996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420741</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Charlap, Leonard S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bieberbach Groups and Flat Manifolds</subfield><subfield code="c">by Leonard S. Charlap</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 242p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Many mathematics books suffer from schizophrenia, and this is yet another. On the one hand it tries to be a reference for the basic results on flat riemannian manifolds. On the other hand it attempts to be a textbook which can be used for a second year graduate course. My aim was to keep the second personality dominant, but the reference persona kept breaking out especially at the end of sections in the form of remarks that contain more advanced material. To satisfy this reference persona, I'll begin by telling you a little about the subject matter of the book, and then I'll talk about the textbook aspect. A flat riemannian manifold is a space in which you can talk about geometry (e. g. distance, angle, curvature, "straight lines," etc. ) and, in addition, the geometry is locally the one we all know and love, namely euclidean geometry. This means that near any point of this space one can introduce coordinates so that with respect to these coordinates, the rules of euclidean geometry hold. These coordinates are not valid in the entire space, so you can't conclude the space is euclidean space itself. In this book we are mainly concerned with compact flat riemannian manifolds, and unless we say otherwise, we use the term "flat manifold" to mean "compact flat riemannian manifold. " It turns out that the most important invariant for flat manifolds is the fundamental group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Flache Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4300461-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bieberbach-Gruppe</subfield><subfield code="0">(DE-588)4128293-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automorphe Funktion</subfield><subfield code="0">(DE-588)4143706-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bieberbach-Gruppe</subfield><subfield code="0">(DE-588)4128293-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bieberbach-Gruppe</subfield><subfield code="0">(DE-588)4128293-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Flache Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4300461-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Automorphe Funktion</subfield><subfield code="0">(DE-588)4143706-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-8687-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856158</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420741 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461386872 9780387963952 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856158 |
oclc_num | 863786996 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 242p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Charlap, Leonard S. Verfasser aut Bieberbach Groups and Flat Manifolds by Leonard S. Charlap New York, NY Springer New York 1986 1 Online-Ressource (XIII, 242p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Many mathematics books suffer from schizophrenia, and this is yet another. On the one hand it tries to be a reference for the basic results on flat riemannian manifolds. On the other hand it attempts to be a textbook which can be used for a second year graduate course. My aim was to keep the second personality dominant, but the reference persona kept breaking out especially at the end of sections in the form of remarks that contain more advanced material. To satisfy this reference persona, I'll begin by telling you a little about the subject matter of the book, and then I'll talk about the textbook aspect. A flat riemannian manifold is a space in which you can talk about geometry (e. g. distance, angle, curvature, "straight lines," etc. ) and, in addition, the geometry is locally the one we all know and love, namely euclidean geometry. This means that near any point of this space one can introduce coordinates so that with respect to these coordinates, the rules of euclidean geometry hold. These coordinates are not valid in the entire space, so you can't conclude the space is euclidean space itself. In this book we are mainly concerned with compact flat riemannian manifolds, and unless we say otherwise, we use the term "flat manifold" to mean "compact flat riemannian manifold. " It turns out that the most important invariant for flat manifolds is the fundamental group Mathematics Group theory Cell aggregation / Mathematics Group Theory and Generalizations Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Flache Mannigfaltigkeit (DE-588)4300461-1 gnd rswk-swf Riemannsche Fläche (DE-588)4049991-1 gnd rswk-swf Bieberbach-Gruppe (DE-588)4128293-0 gnd rswk-swf Automorphe Funktion (DE-588)4143706-8 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Riemannsche Fläche (DE-588)4049991-1 s Bieberbach-Gruppe (DE-588)4128293-0 s 1\p DE-604 Riemannscher Raum (DE-588)4128295-4 s 2\p DE-604 Flache Mannigfaltigkeit (DE-588)4300461-1 s 3\p DE-604 Automorphe Funktion (DE-588)4143706-8 s 4\p DE-604 Gruppentheorie (DE-588)4072157-7 s 5\p DE-604 https://doi.org/10.1007/978-1-4613-8687-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Charlap, Leonard S. Bieberbach Groups and Flat Manifolds Mathematics Group theory Cell aggregation / Mathematics Group Theory and Generalizations Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Flache Mannigfaltigkeit (DE-588)4300461-1 gnd Riemannsche Fläche (DE-588)4049991-1 gnd Bieberbach-Gruppe (DE-588)4128293-0 gnd Automorphe Funktion (DE-588)4143706-8 gnd Riemannscher Raum (DE-588)4128295-4 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4300461-1 (DE-588)4049991-1 (DE-588)4128293-0 (DE-588)4143706-8 (DE-588)4128295-4 (DE-588)4072157-7 |
title | Bieberbach Groups and Flat Manifolds |
title_auth | Bieberbach Groups and Flat Manifolds |
title_exact_search | Bieberbach Groups and Flat Manifolds |
title_full | Bieberbach Groups and Flat Manifolds by Leonard S. Charlap |
title_fullStr | Bieberbach Groups and Flat Manifolds by Leonard S. Charlap |
title_full_unstemmed | Bieberbach Groups and Flat Manifolds by Leonard S. Charlap |
title_short | Bieberbach Groups and Flat Manifolds |
title_sort | bieberbach groups and flat manifolds |
topic | Mathematics Group theory Cell aggregation / Mathematics Group Theory and Generalizations Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Flache Mannigfaltigkeit (DE-588)4300461-1 gnd Riemannsche Fläche (DE-588)4049991-1 gnd Bieberbach-Gruppe (DE-588)4128293-0 gnd Automorphe Funktion (DE-588)4143706-8 gnd Riemannscher Raum (DE-588)4128295-4 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Mathematics Group theory Cell aggregation / Mathematics Group Theory and Generalizations Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Flache Mannigfaltigkeit Riemannsche Fläche Bieberbach-Gruppe Automorphe Funktion Riemannscher Raum Gruppentheorie |
url | https://doi.org/10.1007/978-1-4613-8687-2 |
work_keys_str_mv | AT charlapleonards bieberbachgroupsandflatmanifolds |