Complex Manifolds and Deformation of Complex Structures:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1986
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
283 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is an introduction to the theory of complex manifolds and their deformations. Deformation of the complex structure of Riemann surfaces is an idea which goes back to Riemann who, in his famous memoir on Abelian functions published in 1857, calculated the number of effective parameters on which the deformation depends. Since the publication of Riemann's memoir, questions concerning the deformation of the complex structure of Riemann surfaces have never lost their interest. The deformation of algebraic surfaces seems to have been considered first by Max Noether in 1888 (M. Noether: Anzahl der Modulen einer Classe algebraischer Fliichen, Sitz. K6niglich. Preuss. Akad. der Wiss. zu Berlin, erster Halbband, 1888, pp. 123-127). However, the deformation of higher dimensional complex manifolds had been curiously neglected for 100 years. In 1957, exactly 100 years after Riemann's memoir, Frolicher and Nijenhuis published a paper in which they studied deformation of higher dimensional complex manifolds by a differential geometric method and obtained an important result. (A. Fr61icher and A. Nijenhuis: A theorem on stability of complex structures, Proc. Nat. Acad. Sci., U.S.A., 43 (1957), 239-241) |
Beschreibung: | 1 Online-Ressource (X, 467 p) |
ISBN: | 9781461385905 9781461385929 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-1-4613-8590-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420731 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1986 |||| o||u| ||||||eng d | ||
020 | |a 9781461385905 |c Online |9 978-1-4613-8590-5 | ||
020 | |a 9781461385929 |c Print |9 978-1-4613-8592-9 | ||
024 | 7 | |a 10.1007/978-1-4613-8590-5 |2 doi | |
035 | |a (OCoLC)1165602302 | ||
035 | |a (DE-599)BVBBV042420731 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.34 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kodaira, Kunihiko |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex Manifolds and Deformation of Complex Structures |c by Kunihiko Kodaira |
264 | 1 | |a New York, NY |b Springer New York |c 1986 | |
300 | |a 1 Online-Ressource (X, 467 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 283 |x 0072-7830 | |
500 | |a This book is an introduction to the theory of complex manifolds and their deformations. Deformation of the complex structure of Riemann surfaces is an idea which goes back to Riemann who, in his famous memoir on Abelian functions published in 1857, calculated the number of effective parameters on which the deformation depends. Since the publication of Riemann's memoir, questions concerning the deformation of the complex structure of Riemann surfaces have never lost their interest. The deformation of algebraic surfaces seems to have been considered first by Max Noether in 1888 (M. Noether: Anzahl der Modulen einer Classe algebraischer Fliichen, Sitz. K6niglich. Preuss. Akad. der Wiss. zu Berlin, erster Halbband, 1888, pp. 123-127). However, the deformation of higher dimensional complex manifolds had been curiously neglected for 100 years. In 1957, exactly 100 years after Riemann's memoir, Frolicher and Nijenhuis published a paper in which they studied deformation of higher dimensional complex manifolds by a differential geometric method and obtained an important result. (A. Fr61icher and A. Nijenhuis: A theorem on stability of complex structures, Proc. Nat. Acad. Sci., U.S.A., 43 (1957), 239-241) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Modultheorie |0 (DE-588)4170336-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modul |0 (DE-588)4129770-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deformation |g Mathematik |0 (DE-588)4011284-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holomorphe Abbildung |0 (DE-588)4160471-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deformation |0 (DE-588)4070262-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 0 | 1 | |a Deformation |0 (DE-588)4070262-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 1 | 1 | |a Deformation |g Mathematik |0 (DE-588)4011284-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Holomorphe Abbildung |0 (DE-588)4160471-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Modultheorie |0 (DE-588)4170336-4 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Modul |0 (DE-588)4129770-2 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-8590-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856148 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093001052160 |
---|---|
any_adam_object | |
author | Kodaira, Kunihiko |
author_facet | Kodaira, Kunihiko |
author_role | aut |
author_sort | Kodaira, Kunihiko |
author_variant | k k kk |
building | Verbundindex |
bvnumber | BV042420731 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165602302 (DE-599)BVBBV042420731 |
dewey-full | 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.34 |
dewey-search | 514.34 |
dewey-sort | 3514.34 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-8590-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03996nmm a2200685zcb4500</leader><controlfield tag="001">BV042420731</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461385905</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-8590-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461385929</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-8592-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-8590-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165602302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420731</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kodaira, Kunihiko</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Manifolds and Deformation of Complex Structures</subfield><subfield code="c">by Kunihiko Kodaira</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 467 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">283</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is an introduction to the theory of complex manifolds and their deformations. Deformation of the complex structure of Riemann surfaces is an idea which goes back to Riemann who, in his famous memoir on Abelian functions published in 1857, calculated the number of effective parameters on which the deformation depends. Since the publication of Riemann's memoir, questions concerning the deformation of the complex structure of Riemann surfaces have never lost their interest. The deformation of algebraic surfaces seems to have been considered first by Max Noether in 1888 (M. Noether: Anzahl der Modulen einer Classe algebraischer Fliichen, Sitz. K6niglich. Preuss. Akad. der Wiss. zu Berlin, erster Halbband, 1888, pp. 123-127). However, the deformation of higher dimensional complex manifolds had been curiously neglected for 100 years. In 1957, exactly 100 years after Riemann's memoir, Frolicher and Nijenhuis published a paper in which they studied deformation of higher dimensional complex manifolds by a differential geometric method and obtained an important result. (A. Fr61icher and A. Nijenhuis: A theorem on stability of complex structures, Proc. Nat. Acad. Sci., U.S.A., 43 (1957), 239-241)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deformation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4011284-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Abbildung</subfield><subfield code="0">(DE-588)4160471-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deformation</subfield><subfield code="0">(DE-588)4070262-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deformation</subfield><subfield code="0">(DE-588)4070262-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Deformation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4011284-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Holomorphe Abbildung</subfield><subfield code="0">(DE-588)4160471-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-8590-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856148</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420731 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461385905 9781461385929 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856148 |
oclc_num | 1165602302 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 467 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer New York |
record_format | marc |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Kodaira, Kunihiko Verfasser aut Complex Manifolds and Deformation of Complex Structures by Kunihiko Kodaira New York, NY Springer New York 1986 1 Online-Ressource (X, 467 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 283 0072-7830 This book is an introduction to the theory of complex manifolds and their deformations. Deformation of the complex structure of Riemann surfaces is an idea which goes back to Riemann who, in his famous memoir on Abelian functions published in 1857, calculated the number of effective parameters on which the deformation depends. Since the publication of Riemann's memoir, questions concerning the deformation of the complex structure of Riemann surfaces have never lost their interest. The deformation of algebraic surfaces seems to have been considered first by Max Noether in 1888 (M. Noether: Anzahl der Modulen einer Classe algebraischer Fliichen, Sitz. K6niglich. Preuss. Akad. der Wiss. zu Berlin, erster Halbband, 1888, pp. 123-127). However, the deformation of higher dimensional complex manifolds had been curiously neglected for 100 years. In 1957, exactly 100 years after Riemann's memoir, Frolicher and Nijenhuis published a paper in which they studied deformation of higher dimensional complex manifolds by a differential geometric method and obtained an important result. (A. Fr61icher and A. Nijenhuis: A theorem on stability of complex structures, Proc. Nat. Acad. Sci., U.S.A., 43 (1957), 239-241) Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Modultheorie (DE-588)4170336-4 gnd rswk-swf Modul (DE-588)4129770-2 gnd rswk-swf Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd rswk-swf Deformation Mathematik (DE-588)4011284-6 gnd rswk-swf Holomorphe Abbildung (DE-588)4160471-4 gnd rswk-swf Deformation (DE-588)4070262-5 gnd rswk-swf Komplexe Mannigfaltigkeit (DE-588)4031996-9 s Deformation (DE-588)4070262-5 s 1\p DE-604 Deformation Mathematik (DE-588)4011284-6 s 2\p DE-604 Holomorphe Abbildung (DE-588)4160471-4 s 3\p DE-604 Modultheorie (DE-588)4170336-4 s 4\p DE-604 Modul (DE-588)4129770-2 s 5\p DE-604 https://doi.org/10.1007/978-1-4613-8590-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kodaira, Kunihiko Complex Manifolds and Deformation of Complex Structures Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Modultheorie (DE-588)4170336-4 gnd Modul (DE-588)4129770-2 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Deformation Mathematik (DE-588)4011284-6 gnd Holomorphe Abbildung (DE-588)4160471-4 gnd Deformation (DE-588)4070262-5 gnd |
subject_GND | (DE-588)4170336-4 (DE-588)4129770-2 (DE-588)4031996-9 (DE-588)4011284-6 (DE-588)4160471-4 (DE-588)4070262-5 |
title | Complex Manifolds and Deformation of Complex Structures |
title_auth | Complex Manifolds and Deformation of Complex Structures |
title_exact_search | Complex Manifolds and Deformation of Complex Structures |
title_full | Complex Manifolds and Deformation of Complex Structures by Kunihiko Kodaira |
title_fullStr | Complex Manifolds and Deformation of Complex Structures by Kunihiko Kodaira |
title_full_unstemmed | Complex Manifolds and Deformation of Complex Structures by Kunihiko Kodaira |
title_short | Complex Manifolds and Deformation of Complex Structures |
title_sort | complex manifolds and deformation of complex structures |
topic | Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Modultheorie (DE-588)4170336-4 gnd Modul (DE-588)4129770-2 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Deformation Mathematik (DE-588)4011284-6 gnd Holomorphe Abbildung (DE-588)4160471-4 gnd Deformation (DE-588)4070262-5 gnd |
topic_facet | Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Modultheorie Modul Komplexe Mannigfaltigkeit Deformation Mathematik Holomorphe Abbildung Deformation |
url | https://doi.org/10.1007/978-1-4613-8590-5 |
work_keys_str_mv | AT kodairakunihiko complexmanifoldsanddeformationofcomplexstructures |