Representations of Integers as Sums of Squares:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1985
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | During the academic year 1980-1981 I was teaching at the Technion- the Israeli Institute of Technology- in Haifa. The audience was small, but consisted of particularly gifted and eager listeners; unfortunately, their background varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the intention of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience. A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the Encyclopedia of Mathematical Sciences under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be |
Beschreibung: | 1 Online-Ressource (251p) |
ISBN: | 9781461385660 9781461385684 |
DOI: | 10.1007/978-1-4613-8566-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420728 | ||
003 | DE-604 | ||
005 | 20171221 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1985 |||| o||u| ||||||eng d | ||
020 | |a 9781461385660 |c Online |9 978-1-4613-8566-0 | ||
020 | |a 9781461385684 |c Print |9 978-1-4613-8568-4 | ||
024 | 7 | |a 10.1007/978-1-4613-8566-0 |2 doi | |
035 | |a (OCoLC)863785231 | ||
035 | |a (DE-599)BVBBV042420728 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Grosswald, Emil |e Verfasser |4 aut | |
245 | 1 | 0 | |a Representations of Integers as Sums of Squares |c by Emil Grosswald |
264 | 1 | |a New York, NY |b Springer New York |c 1985 | |
300 | |a 1 Online-Ressource (251p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a During the academic year 1980-1981 I was teaching at the Technion- the Israeli Institute of Technology- in Haifa. The audience was small, but consisted of particularly gifted and eager listeners; unfortunately, their background varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the intention of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience. A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the Encyclopedia of Mathematical Sciences under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Darstellung |0 (DE-588)4200624-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Natürliche Zahl |0 (DE-588)4041357-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reihe |0 (DE-588)4049197-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quadratische Form |0 (DE-588)4128297-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quadratsumme |0 (DE-588)4176569-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Natürliche Zahl |0 (DE-588)4041357-3 |D s |
689 | 0 | 1 | |a Darstellung |0 (DE-588)4200624-7 |D s |
689 | 0 | 2 | |a Reihe |0 (DE-588)4049197-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Natürliche Zahl |0 (DE-588)4041357-3 |D s |
689 | 1 | 1 | |a Darstellung |0 (DE-588)4200624-7 |D s |
689 | 1 | 2 | |a Quadratische Form |0 (DE-588)4128297-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Quadratsumme |0 (DE-588)4176569-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-8566-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856145 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092987420672 |
---|---|
any_adam_object | |
author | Grosswald, Emil |
author_facet | Grosswald, Emil |
author_role | aut |
author_sort | Grosswald, Emil |
author_variant | e g eg |
building | Verbundindex |
bvnumber | BV042420728 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863785231 (DE-599)BVBBV042420728 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-8566-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03463nmm a2200613zc 4500</leader><controlfield tag="001">BV042420728</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461385660</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-8566-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461385684</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-8568-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-8566-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863785231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420728</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grosswald, Emil</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of Integers as Sums of Squares</subfield><subfield code="c">by Emil Grosswald</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (251p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">During the academic year 1980-1981 I was teaching at the Technion- the Israeli Institute of Technology- in Haifa. The audience was small, but consisted of particularly gifted and eager listeners; unfortunately, their background varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the intention of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience. A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the Encyclopedia of Mathematical Sciences under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="0">(DE-588)4200624-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Natürliche Zahl</subfield><subfield code="0">(DE-588)4041357-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reihe</subfield><subfield code="0">(DE-588)4049197-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratsumme</subfield><subfield code="0">(DE-588)4176569-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Natürliche Zahl</subfield><subfield code="0">(DE-588)4041357-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellung</subfield><subfield code="0">(DE-588)4200624-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Reihe</subfield><subfield code="0">(DE-588)4049197-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Natürliche Zahl</subfield><subfield code="0">(DE-588)4041357-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellung</subfield><subfield code="0">(DE-588)4200624-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quadratsumme</subfield><subfield code="0">(DE-588)4176569-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-8566-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856145</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420728 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461385660 9781461385684 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856145 |
oclc_num | 863785231 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (251p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Springer New York |
record_format | marc |
spelling | Grosswald, Emil Verfasser aut Representations of Integers as Sums of Squares by Emil Grosswald New York, NY Springer New York 1985 1 Online-Ressource (251p) txt rdacontent c rdamedia cr rdacarrier During the academic year 1980-1981 I was teaching at the Technion- the Israeli Institute of Technology- in Haifa. The audience was small, but consisted of particularly gifted and eager listeners; unfortunately, their background varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the intention of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience. A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the Encyclopedia of Mathematical Sciences under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be Mathematics Number theory Number Theory Mathematik Darstellung (DE-588)4200624-7 gnd rswk-swf Natürliche Zahl (DE-588)4041357-3 gnd rswk-swf Reihe (DE-588)4049197-3 gnd rswk-swf Quadratische Form (DE-588)4128297-8 gnd rswk-swf Quadratsumme (DE-588)4176569-2 gnd rswk-swf Natürliche Zahl (DE-588)4041357-3 s Darstellung (DE-588)4200624-7 s Reihe (DE-588)4049197-3 s 1\p DE-604 Quadratische Form (DE-588)4128297-8 s 2\p DE-604 Quadratsumme (DE-588)4176569-2 s 3\p DE-604 https://doi.org/10.1007/978-1-4613-8566-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Grosswald, Emil Representations of Integers as Sums of Squares Mathematics Number theory Number Theory Mathematik Darstellung (DE-588)4200624-7 gnd Natürliche Zahl (DE-588)4041357-3 gnd Reihe (DE-588)4049197-3 gnd Quadratische Form (DE-588)4128297-8 gnd Quadratsumme (DE-588)4176569-2 gnd |
subject_GND | (DE-588)4200624-7 (DE-588)4041357-3 (DE-588)4049197-3 (DE-588)4128297-8 (DE-588)4176569-2 |
title | Representations of Integers as Sums of Squares |
title_auth | Representations of Integers as Sums of Squares |
title_exact_search | Representations of Integers as Sums of Squares |
title_full | Representations of Integers as Sums of Squares by Emil Grosswald |
title_fullStr | Representations of Integers as Sums of Squares by Emil Grosswald |
title_full_unstemmed | Representations of Integers as Sums of Squares by Emil Grosswald |
title_short | Representations of Integers as Sums of Squares |
title_sort | representations of integers as sums of squares |
topic | Mathematics Number theory Number Theory Mathematik Darstellung (DE-588)4200624-7 gnd Natürliche Zahl (DE-588)4041357-3 gnd Reihe (DE-588)4049197-3 gnd Quadratische Form (DE-588)4128297-8 gnd Quadratsumme (DE-588)4176569-2 gnd |
topic_facet | Mathematics Number theory Number Theory Mathematik Darstellung Natürliche Zahl Reihe Quadratische Form Quadratsumme |
url | https://doi.org/10.1007/978-1-4613-8566-0 |
work_keys_str_mv | AT grosswaldemil representationsofintegersassumsofsquares |