Graph Theory and Sparse Matrix Computation:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1993
|
Schriftenreihe: | The IMA Volumes in Mathematics and its Applications
56 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This IMA Volume in Mathematics and its Appllcations GRAPH THEORY AND SPARSE MATRIX COMPUTATION is based on the proceedings of a workshop that was an integraI part of the 1991- 92 IMA program on "Applied Linear AIgebra." The purpose of the workshop was to bring together people who work in sparse matrix computation with those who conduct research in applied graph theory and grl:l,ph algorithms, in order to foster active cross-fertilization. We are grateful to Richard Brualdi, George Cybenko, Alan Geo~ge, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-Iong program. We espeeially thank Alan George, John R. Gilbert, and Joseph W.H. Liu for organizing this workshop and editing the proceedings. The finaneial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller. Jr. PREFACE When reality is modeled by computation, linear algebra is often the con nec tiori between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer. Efficiency demands that every possible advantage be exploited: sparse structure, advanced com puter architectures, efficient algorithms. Therefore sparse matrix computation knits together threads from linear algebra, parallei computing, data struetures, geometry, and both numerieal and discrete algorithms |
Beschreibung: | 1 Online-Ressource (245p) |
ISBN: | 9781461383697 9781461383710 |
ISSN: | 0940-6573 |
DOI: | 10.1007/978-1-4613-8369-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420700 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781461383697 |c Online |9 978-1-4613-8369-7 | ||
020 | |a 9781461383710 |c Print |9 978-1-4613-8371-0 | ||
024 | 7 | |a 10.1007/978-1-4613-8369-7 |2 doi | |
035 | |a (OCoLC)879624844 | ||
035 | |a (DE-599)BVBBV042420700 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a George, Alan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Graph Theory and Sparse Matrix Computation |c edited by Alan George, John R. Gilbert, Joseph W. H. Liu |
264 | 1 | |a New York, NY |b Springer New York |c 1993 | |
300 | |a 1 Online-Ressource (245p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The IMA Volumes in Mathematics and its Applications |v 56 |x 0940-6573 | |
500 | |a This IMA Volume in Mathematics and its Appllcations GRAPH THEORY AND SPARSE MATRIX COMPUTATION is based on the proceedings of a workshop that was an integraI part of the 1991- 92 IMA program on "Applied Linear AIgebra." The purpose of the workshop was to bring together people who work in sparse matrix computation with those who conduct research in applied graph theory and grl:l,ph algorithms, in order to foster active cross-fertilization. We are grateful to Richard Brualdi, George Cybenko, Alan Geo~ge, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-Iong program. We espeeially thank Alan George, John R. Gilbert, and Joseph W.H. Liu for organizing this workshop and editing the proceedings. The finaneial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller. Jr. PREFACE When reality is modeled by computation, linear algebra is often the con nec tiori between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer. Efficiency demands that every possible advantage be exploited: sparse structure, advanced com puter architectures, efficient algorithms. Therefore sparse matrix computation knits together threads from linear algebra, parallei computing, data struetures, geometry, and both numerieal and discrete algorithms | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwach besetzte Matrix |0 (DE-588)4056053-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | 1 | |a Schwach besetzte Matrix |0 (DE-588)4056053-3 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
700 | 1 | |a Gilbert, John R. |e Sonstige |4 oth | |
700 | 1 | |a Liu, Joseph W. H. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-8369-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856117 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092911923200 |
---|---|
any_adam_object | |
author | George, Alan |
author_facet | George, Alan |
author_role | aut |
author_sort | George, Alan |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV042420700 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624844 (DE-599)BVBBV042420700 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-8369-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03560nmm a2200565zcb4500</leader><controlfield tag="001">BV042420700</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461383697</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-8369-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461383710</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-8371-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-8369-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420700</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">George, Alan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graph Theory and Sparse Matrix Computation</subfield><subfield code="c">edited by Alan George, John R. Gilbert, Joseph W. H. Liu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (245p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The IMA Volumes in Mathematics and its Applications</subfield><subfield code="v">56</subfield><subfield code="x">0940-6573</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This IMA Volume in Mathematics and its Appllcations GRAPH THEORY AND SPARSE MATRIX COMPUTATION is based on the proceedings of a workshop that was an integraI part of the 1991- 92 IMA program on "Applied Linear AIgebra." The purpose of the workshop was to bring together people who work in sparse matrix computation with those who conduct research in applied graph theory and grl:l,ph algorithms, in order to foster active cross-fertilization. We are grateful to Richard Brualdi, George Cybenko, Alan Geo~ge, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-Iong program. We espeeially thank Alan George, John R. Gilbert, and Joseph W.H. Liu for organizing this workshop and editing the proceedings. The finaneial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller. Jr. PREFACE When reality is modeled by computation, linear algebra is often the con nec tiori between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer. Efficiency demands that every possible advantage be exploited: sparse structure, advanced com puter architectures, efficient algorithms. Therefore sparse matrix computation knits together threads from linear algebra, parallei computing, data struetures, geometry, and both numerieal and discrete algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilbert, John R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Joseph W. H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-8369-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856117</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content 2\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Konferenzschrift Aufsatzsammlung |
id | DE-604.BV042420700 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461383697 9781461383710 |
issn | 0940-6573 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856117 |
oclc_num | 879624844 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (245p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer New York |
record_format | marc |
series2 | The IMA Volumes in Mathematics and its Applications |
spelling | George, Alan Verfasser aut Graph Theory and Sparse Matrix Computation edited by Alan George, John R. Gilbert, Joseph W. H. Liu New York, NY Springer New York 1993 1 Online-Ressource (245p) txt rdacontent c rdamedia cr rdacarrier The IMA Volumes in Mathematics and its Applications 56 0940-6573 This IMA Volume in Mathematics and its Appllcations GRAPH THEORY AND SPARSE MATRIX COMPUTATION is based on the proceedings of a workshop that was an integraI part of the 1991- 92 IMA program on "Applied Linear AIgebra." The purpose of the workshop was to bring together people who work in sparse matrix computation with those who conduct research in applied graph theory and grl:l,ph algorithms, in order to foster active cross-fertilization. We are grateful to Richard Brualdi, George Cybenko, Alan Geo~ge, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-Iong program. We espeeially thank Alan George, John R. Gilbert, and Joseph W.H. Liu for organizing this workshop and editing the proceedings. The finaneial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller. Jr. PREFACE When reality is modeled by computation, linear algebra is often the con nec tiori between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer. Efficiency demands that every possible advantage be exploited: sparse structure, advanced com puter architectures, efficient algorithms. Therefore sparse matrix computation knits together threads from linear algebra, parallei computing, data struetures, geometry, and both numerieal and discrete algorithms Mathematics Numerical analysis Combinatorics Numerical Analysis Mathematik Graphentheorie (DE-588)4113782-6 gnd rswk-swf Schwach besetzte Matrix (DE-588)4056053-3 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content 2\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Graphentheorie (DE-588)4113782-6 s Schwach besetzte Matrix (DE-588)4056053-3 s 3\p DE-604 Gilbert, John R. Sonstige oth Liu, Joseph W. H. Sonstige oth https://doi.org/10.1007/978-1-4613-8369-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | George, Alan Graph Theory and Sparse Matrix Computation Mathematics Numerical analysis Combinatorics Numerical Analysis Mathematik Graphentheorie (DE-588)4113782-6 gnd Schwach besetzte Matrix (DE-588)4056053-3 gnd |
subject_GND | (DE-588)4113782-6 (DE-588)4056053-3 (DE-588)1071861417 (DE-588)4143413-4 |
title | Graph Theory and Sparse Matrix Computation |
title_auth | Graph Theory and Sparse Matrix Computation |
title_exact_search | Graph Theory and Sparse Matrix Computation |
title_full | Graph Theory and Sparse Matrix Computation edited by Alan George, John R. Gilbert, Joseph W. H. Liu |
title_fullStr | Graph Theory and Sparse Matrix Computation edited by Alan George, John R. Gilbert, Joseph W. H. Liu |
title_full_unstemmed | Graph Theory and Sparse Matrix Computation edited by Alan George, John R. Gilbert, Joseph W. H. Liu |
title_short | Graph Theory and Sparse Matrix Computation |
title_sort | graph theory and sparse matrix computation |
topic | Mathematics Numerical analysis Combinatorics Numerical Analysis Mathematik Graphentheorie (DE-588)4113782-6 gnd Schwach besetzte Matrix (DE-588)4056053-3 gnd |
topic_facet | Mathematics Numerical analysis Combinatorics Numerical Analysis Mathematik Graphentheorie Schwach besetzte Matrix Konferenzschrift Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4613-8369-7 |
work_keys_str_mv | AT georgealan graphtheoryandsparsematrixcomputation AT gilbertjohnr graphtheoryandsparsematrixcomputation AT liujosephwh graphtheoryandsparsematrixcomputation |