Difference Methods and Their Extrapolations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1983
|
Schriftenreihe: | Applications of Mathematics, Applied Probability Control Economics Information and Communication Modeling and Identification Numerical Techniques Optimization
19 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The stimulus for the present work is the growing need for more accurate numerical methods. The rapid advances in computer technology have not provided the resources for computations which make use of methods with low accuracy. The computational speed of computers is continually increasing, while memory still remains a problem when one handles large arrays. More accurate numerical methods allow us to reduce the overall computation time by of magnitude. several orders The problem of finding the most efficient methods for the numerical solution of equations, under the assumption of fixed array size, is therefore of paramount importance. Advances in the applied sciences, such as aerodynamics, hydrodynamics, particle transport, and scattering, have increased the demands placed on numerical mathematics. New mathematical models, describing various physical phenomena in greater detail than ever before, create new demands on applied mathematics, and have acted as a major impetus to the development of computer science. For example, when investigating the stability of a fluid flowing around an object one needs to solve the low viscosity form of certain hydrodynamic equations describing the fluid flow. The usual numerical methods for doing so require the introduction of a "computational viscosity," which usually exceeds the physical value; the results obtained thus present a distorted picture of the phenomena under study. A similar situation arises in the study of behavior of the oceans, assuming weak turbulence. Many additional examples of this type can be given |
Beschreibung: | 1 Online-Ressource (334p) |
ISBN: | 9781461382249 9781461382263 |
ISSN: | 0172-4568 |
DOI: | 10.1007/978-1-4613-8224-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420687 | ||
003 | DE-604 | ||
005 | 20230517 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1983 |||| o||u| ||||||eng d | ||
020 | |a 9781461382249 |c Online |9 978-1-4613-8224-9 | ||
020 | |a 9781461382263 |c Print |9 978-1-4613-8226-3 | ||
024 | 7 | |a 10.1007/978-1-4613-8224-9 |2 doi | |
035 | |a (OCoLC)879624486 | ||
035 | |a (DE-599)BVBBV042420687 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Marčuk, Gurij I. |d 1925-2013 |e Verfasser |0 (DE-588)119060701 |4 aut | |
245 | 1 | 0 | |a Difference Methods and Their Extrapolations |c by G. I. Marchuk, V. V. Shaidurov |
264 | 1 | |a New York, NY |b Springer New York |c 1983 | |
300 | |a 1 Online-Ressource (334p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applications of Mathematics, Applied Probability Control Economics Information and Communication Modeling and Identification Numerical Techniques Optimization |v 19 |x 0172-4568 | |
500 | |a The stimulus for the present work is the growing need for more accurate numerical methods. The rapid advances in computer technology have not provided the resources for computations which make use of methods with low accuracy. The computational speed of computers is continually increasing, while memory still remains a problem when one handles large arrays. More accurate numerical methods allow us to reduce the overall computation time by of magnitude. several orders The problem of finding the most efficient methods for the numerical solution of equations, under the assumption of fixed array size, is therefore of paramount importance. Advances in the applied sciences, such as aerodynamics, hydrodynamics, particle transport, and scattering, have increased the demands placed on numerical mathematics. New mathematical models, describing various physical phenomena in greater detail than ever before, create new demands on applied mathematics, and have acted as a major impetus to the development of computer science. For example, when investigating the stability of a fluid flowing around an object one needs to solve the low viscosity form of certain hydrodynamic equations describing the fluid flow. The usual numerical methods for doing so require the introduction of a "computational viscosity," which usually exceeds the physical value; the results obtained thus present a distorted picture of the phenomena under study. A similar situation arises in the study of behavior of the oceans, assuming weak turbulence. Many additional examples of this type can be given | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Differenzengleichung |0 (DE-588)4012264-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzenverfahren |0 (DE-588)4134362-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Extrapolation |0 (DE-588)4153421-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differenzengleichung |0 (DE-588)4012264-5 |D s |
689 | 0 | 1 | |a Extrapolation |0 (DE-588)4153421-9 |D s |
689 | 0 | 2 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differenzenverfahren |0 (DE-588)4134362-1 |D s |
689 | 1 | 1 | |a Extrapolation |0 (DE-588)4153421-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Šajdurov, Vladimir Viktorovič |d ca. 20. Jh. |e Sonstige |0 (DE-588)1068388013 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-8224-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856104 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092890951680 |
---|---|
any_adam_object | |
author | Marčuk, Gurij I. 1925-2013 |
author_GND | (DE-588)119060701 (DE-588)1068388013 |
author_facet | Marčuk, Gurij I. 1925-2013 |
author_role | aut |
author_sort | Marčuk, Gurij I. 1925-2013 |
author_variant | g i m gi gim |
building | Verbundindex |
bvnumber | BV042420687 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624486 (DE-599)BVBBV042420687 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-8224-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03899nmm a2200577zcb4500</leader><controlfield tag="001">BV042420687</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230517 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461382249</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-8224-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461382263</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-8226-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-8224-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420687</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marčuk, Gurij I.</subfield><subfield code="d">1925-2013</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119060701</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Difference Methods and Their Extrapolations</subfield><subfield code="c">by G. I. Marchuk, V. V. Shaidurov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (334p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applications of Mathematics, Applied Probability Control Economics Information and Communication Modeling and Identification Numerical Techniques Optimization</subfield><subfield code="v">19</subfield><subfield code="x">0172-4568</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The stimulus for the present work is the growing need for more accurate numerical methods. The rapid advances in computer technology have not provided the resources for computations which make use of methods with low accuracy. The computational speed of computers is continually increasing, while memory still remains a problem when one handles large arrays. More accurate numerical methods allow us to reduce the overall computation time by of magnitude. several orders The problem of finding the most efficient methods for the numerical solution of equations, under the assumption of fixed array size, is therefore of paramount importance. Advances in the applied sciences, such as aerodynamics, hydrodynamics, particle transport, and scattering, have increased the demands placed on numerical mathematics. New mathematical models, describing various physical phenomena in greater detail than ever before, create new demands on applied mathematics, and have acted as a major impetus to the development of computer science. For example, when investigating the stability of a fluid flowing around an object one needs to solve the low viscosity form of certain hydrodynamic equations describing the fluid flow. The usual numerical methods for doing so require the introduction of a "computational viscosity," which usually exceeds the physical value; the results obtained thus present a distorted picture of the phenomena under study. A similar situation arises in the study of behavior of the oceans, assuming weak turbulence. Many additional examples of this type can be given</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extrapolation</subfield><subfield code="0">(DE-588)4153421-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Extrapolation</subfield><subfield code="0">(DE-588)4153421-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Extrapolation</subfield><subfield code="0">(DE-588)4153421-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šajdurov, Vladimir Viktorovič</subfield><subfield code="d">ca. 20. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1068388013</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-8224-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856104</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420687 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461382249 9781461382263 |
issn | 0172-4568 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856104 |
oclc_num | 879624486 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (334p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Springer New York |
record_format | marc |
series2 | Applications of Mathematics, Applied Probability Control Economics Information and Communication Modeling and Identification Numerical Techniques Optimization |
spelling | Marčuk, Gurij I. 1925-2013 Verfasser (DE-588)119060701 aut Difference Methods and Their Extrapolations by G. I. Marchuk, V. V. Shaidurov New York, NY Springer New York 1983 1 Online-Ressource (334p) txt rdacontent c rdamedia cr rdacarrier Applications of Mathematics, Applied Probability Control Economics Information and Communication Modeling and Identification Numerical Techniques Optimization 19 0172-4568 The stimulus for the present work is the growing need for more accurate numerical methods. The rapid advances in computer technology have not provided the resources for computations which make use of methods with low accuracy. The computational speed of computers is continually increasing, while memory still remains a problem when one handles large arrays. More accurate numerical methods allow us to reduce the overall computation time by of magnitude. several orders The problem of finding the most efficient methods for the numerical solution of equations, under the assumption of fixed array size, is therefore of paramount importance. Advances in the applied sciences, such as aerodynamics, hydrodynamics, particle transport, and scattering, have increased the demands placed on numerical mathematics. New mathematical models, describing various physical phenomena in greater detail than ever before, create new demands on applied mathematics, and have acted as a major impetus to the development of computer science. For example, when investigating the stability of a fluid flowing around an object one needs to solve the low viscosity form of certain hydrodynamic equations describing the fluid flow. The usual numerical methods for doing so require the introduction of a "computational viscosity," which usually exceeds the physical value; the results obtained thus present a distorted picture of the phenomena under study. A similar situation arises in the study of behavior of the oceans, assuming weak turbulence. Many additional examples of this type can be given Mathematics Numerical analysis Numerical Analysis Mathematik Differenzengleichung (DE-588)4012264-5 gnd rswk-swf Differenzenverfahren (DE-588)4134362-1 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Extrapolation (DE-588)4153421-9 gnd rswk-swf Differenzengleichung (DE-588)4012264-5 s Extrapolation (DE-588)4153421-9 s Algorithmus (DE-588)4001183-5 s 1\p DE-604 Differenzenverfahren (DE-588)4134362-1 s 2\p DE-604 Šajdurov, Vladimir Viktorovič ca. 20. Jh. Sonstige (DE-588)1068388013 oth https://doi.org/10.1007/978-1-4613-8224-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Marčuk, Gurij I. 1925-2013 Difference Methods and Their Extrapolations Mathematics Numerical analysis Numerical Analysis Mathematik Differenzengleichung (DE-588)4012264-5 gnd Differenzenverfahren (DE-588)4134362-1 gnd Algorithmus (DE-588)4001183-5 gnd Extrapolation (DE-588)4153421-9 gnd |
subject_GND | (DE-588)4012264-5 (DE-588)4134362-1 (DE-588)4001183-5 (DE-588)4153421-9 |
title | Difference Methods and Their Extrapolations |
title_auth | Difference Methods and Their Extrapolations |
title_exact_search | Difference Methods and Their Extrapolations |
title_full | Difference Methods and Their Extrapolations by G. I. Marchuk, V. V. Shaidurov |
title_fullStr | Difference Methods and Their Extrapolations by G. I. Marchuk, V. V. Shaidurov |
title_full_unstemmed | Difference Methods and Their Extrapolations by G. I. Marchuk, V. V. Shaidurov |
title_short | Difference Methods and Their Extrapolations |
title_sort | difference methods and their extrapolations |
topic | Mathematics Numerical analysis Numerical Analysis Mathematik Differenzengleichung (DE-588)4012264-5 gnd Differenzenverfahren (DE-588)4134362-1 gnd Algorithmus (DE-588)4001183-5 gnd Extrapolation (DE-588)4153421-9 gnd |
topic_facet | Mathematics Numerical analysis Numerical Analysis Mathematik Differenzengleichung Differenzenverfahren Algorithmus Extrapolation |
url | https://doi.org/10.1007/978-1-4613-8224-9 |
work_keys_str_mv | AT marcukguriji differencemethodsandtheirextrapolations AT sajdurovvladimirviktorovic differencemethodsandtheirextrapolations |