Introduction to Axiomatic Set Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1982
|
Ausgabe: | Second Edition |
Schriftenreihe: | Graduate Texts in Mathematics
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In 1963, the first author introduced a course in set theory at the University of Illinois whose main objectives were to cover Godel's work on the con sistency of the Axiom of Choice (AC) and the Generalized Continuum Hypothesis (GCH), and Cohen's work on the independence of the AC and the GCH. Notes taken in 1963 by the second author were taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in set theory frequently develop the subject rapidly moving from key result to key result and suppressing many details. Advocates of the fast development claim at least two advantages. First, key results are high lighted, and second, the student who wishes to master the subject is com pelled to develop the detail on his own. However, an instructor using a "fast development" text must devote much class time to assisting his students in their efforts to bridge gaps in the text |
Beschreibung: | 1 Online-Ressource (X, 246 p) |
ISBN: | 9781461381686 9781461381709 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4613-8168-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420676 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1982 |||| o||u| ||||||eng d | ||
020 | |a 9781461381686 |c Online |9 978-1-4613-8168-6 | ||
020 | |a 9781461381709 |c Print |9 978-1-4613-8170-9 | ||
024 | 7 | |a 10.1007/978-1-4613-8168-6 |2 doi | |
035 | |a (OCoLC)863782389 | ||
035 | |a (DE-599)BVBBV042420676 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Takeuti, Gaisi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Axiomatic Set Theory |c by Gaisi Takeuti, Wilson M. Zaring |
250 | |a Second Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 1982 | |
300 | |a 1 Online-Ressource (X, 246 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 1 |x 0072-5285 | |
500 | |a In 1963, the first author introduced a course in set theory at the University of Illinois whose main objectives were to cover Godel's work on the con sistency of the Axiom of Choice (AC) and the Generalized Continuum Hypothesis (GCH), and Cohen's work on the independence of the AC and the GCH. Notes taken in 1963 by the second author were taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in set theory frequently develop the subject rapidly moving from key result to key result and suppressing many details. Advocates of the fast development claim at least two advantages. First, key results are high lighted, and second, the student who wishes to master the subject is com pelled to develop the detail on his own. However, an instructor using a "fast development" text must devote much class time to assisting his students in their efforts to bridge gaps in the text | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Axiomatik |0 (DE-588)4004038-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Axiomatische Mengenlehre |0 (DE-588)4143743-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | 1 | |a Axiomatik |0 (DE-588)4004038-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Axiomatische Mengenlehre |0 (DE-588)4143743-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Zaring, Wilson M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-8168-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856093 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092868931584 |
---|---|
any_adam_object | |
author | Takeuti, Gaisi |
author_facet | Takeuti, Gaisi |
author_role | aut |
author_sort | Takeuti, Gaisi |
author_variant | g t gt |
building | Verbundindex |
bvnumber | BV042420676 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863782389 (DE-599)BVBBV042420676 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-8168-6 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02934nmm a2200553zcb4500</leader><controlfield tag="001">BV042420676</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461381686</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-8168-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461381709</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-8170-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-8168-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863782389</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420676</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Takeuti, Gaisi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Axiomatic Set Theory</subfield><subfield code="c">by Gaisi Takeuti, Wilson M. Zaring</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 246 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">1</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1963, the first author introduced a course in set theory at the University of Illinois whose main objectives were to cover Godel's work on the con sistency of the Axiom of Choice (AC) and the Generalized Continuum Hypothesis (GCH), and Cohen's work on the independence of the AC and the GCH. Notes taken in 1963 by the second author were taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in set theory frequently develop the subject rapidly moving from key result to key result and suppressing many details. Advocates of the fast development claim at least two advantages. First, key results are high lighted, and second, the student who wishes to master the subject is com pelled to develop the detail on his own. However, an instructor using a "fast development" text must devote much class time to assisting his students in their efforts to bridge gaps in the text</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaring, Wilson M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-8168-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856093</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420676 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461381686 9781461381709 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856093 |
oclc_num | 863782389 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 246 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Takeuti, Gaisi Verfasser aut Introduction to Axiomatic Set Theory by Gaisi Takeuti, Wilson M. Zaring Second Edition New York, NY Springer New York 1982 1 Online-Ressource (X, 246 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 1 0072-5285 In 1963, the first author introduced a course in set theory at the University of Illinois whose main objectives were to cover Godel's work on the con sistency of the Axiom of Choice (AC) and the Generalized Continuum Hypothesis (GCH), and Cohen's work on the independence of the AC and the GCH. Notes taken in 1963 by the second author were taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in set theory frequently develop the subject rapidly moving from key result to key result and suppressing many details. Advocates of the fast development claim at least two advantages. First, key results are high lighted, and second, the student who wishes to master the subject is com pelled to develop the detail on his own. However, an instructor using a "fast development" text must devote much class time to assisting his students in their efforts to bridge gaps in the text Mathematics Logic, Symbolic and mathematical Mathematical Logic and Foundations Mathematik Mengenlehre (DE-588)4074715-3 gnd rswk-swf Axiomatik (DE-588)4004038-0 gnd rswk-swf Axiomatische Mengenlehre (DE-588)4143743-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s Axiomatik (DE-588)4004038-0 s 1\p DE-604 Axiomatische Mengenlehre (DE-588)4143743-3 s 2\p DE-604 Zaring, Wilson M. Sonstige oth https://doi.org/10.1007/978-1-4613-8168-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Takeuti, Gaisi Introduction to Axiomatic Set Theory Mathematics Logic, Symbolic and mathematical Mathematical Logic and Foundations Mathematik Mengenlehre (DE-588)4074715-3 gnd Axiomatik (DE-588)4004038-0 gnd Axiomatische Mengenlehre (DE-588)4143743-3 gnd |
subject_GND | (DE-588)4074715-3 (DE-588)4004038-0 (DE-588)4143743-3 |
title | Introduction to Axiomatic Set Theory |
title_auth | Introduction to Axiomatic Set Theory |
title_exact_search | Introduction to Axiomatic Set Theory |
title_full | Introduction to Axiomatic Set Theory by Gaisi Takeuti, Wilson M. Zaring |
title_fullStr | Introduction to Axiomatic Set Theory by Gaisi Takeuti, Wilson M. Zaring |
title_full_unstemmed | Introduction to Axiomatic Set Theory by Gaisi Takeuti, Wilson M. Zaring |
title_short | Introduction to Axiomatic Set Theory |
title_sort | introduction to axiomatic set theory |
topic | Mathematics Logic, Symbolic and mathematical Mathematical Logic and Foundations Mathematik Mengenlehre (DE-588)4074715-3 gnd Axiomatik (DE-588)4004038-0 gnd Axiomatische Mengenlehre (DE-588)4143743-3 gnd |
topic_facet | Mathematics Logic, Symbolic and mathematical Mathematical Logic and Foundations Mathematik Mengenlehre Axiomatik Axiomatische Mengenlehre |
url | https://doi.org/10.1007/978-1-4613-8168-6 |
work_keys_str_mv | AT takeutigaisi introductiontoaxiomaticsettheory AT zaringwilsonm introductiontoaxiomaticsettheory |