Ordered Groups and Infinite Permutation Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1996
|
Schriftenreihe: | Mathematics and Its Applications
354 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The subjects of ordered groups and of infinite permutation groups have long en joyed a symbiotic relationship. Although the two subjects come from very different sources, they have in certain ways come together, and each has derived considerable benefit from the other. My own personal contact with this interaction began in 1961. I had done Ph. D. work on sequence convergence in totally ordered groups under the direction of Paul Conrad. In the process, I had encountered "pseudo-convergent" sequences in an ordered group G, which are like Cauchy sequences, except that the differences be tween terms of large index approach not 0 but a convex subgroup G of G. If G is normal, then such sequences are conveniently described as Cauchy sequences in the quotient ordered group GIG. If G is not normal, of course GIG has no group structure, though it is still a totally ordered set. The best that can be said is that the elements of G permute GIG in an order-preserving fashion. In independent investigations around that time, both P. Conrad and P. Cohn had showed that a group admits a total right ordering if and only if the group is a group of automor phisms of a totally ordered set. (In a right ordered group, the order is required to be preserved by all right translations, unlike a (two-sided) ordered group, where both right and left translations must preserve the order |
Beschreibung: | 1 Online-Ressource (VIII, 248 p) |
ISBN: | 9781461334439 9781461334453 |
DOI: | 10.1007/978-1-4613-3443-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420638 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461334439 |c Online |9 978-1-4613-3443-9 | ||
020 | |a 9781461334453 |c Print |9 978-1-4613-3445-3 | ||
024 | 7 | |a 10.1007/978-1-4613-3443-9 |2 doi | |
035 | |a (OCoLC)905447659 | ||
035 | |a (DE-599)BVBBV042420638 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Holland, W. Charles |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ordered Groups and Infinite Permutation Groups |c edited by W. Charles Holland |
264 | 1 | |a Boston, MA |b Springer US |c 1996 | |
300 | |a 1 Online-Ressource (VIII, 248 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 354 | |
500 | |a The subjects of ordered groups and of infinite permutation groups have long en joyed a symbiotic relationship. Although the two subjects come from very different sources, they have in certain ways come together, and each has derived considerable benefit from the other. My own personal contact with this interaction began in 1961. I had done Ph. D. work on sequence convergence in totally ordered groups under the direction of Paul Conrad. In the process, I had encountered "pseudo-convergent" sequences in an ordered group G, which are like Cauchy sequences, except that the differences be tween terms of large index approach not 0 but a convex subgroup G of G. If G is normal, then such sequences are conveniently described as Cauchy sequences in the quotient ordered group GIG. If G is not normal, of course GIG has no group structure, though it is still a totally ordered set. The best that can be said is that the elements of G permute GIG in an order-preserving fashion. In independent investigations around that time, both P. Conrad and P. Cohn had showed that a group admits a total right ordering if and only if the group is a group of automor phisms of a totally ordered set. (In a right ordered group, the order is required to be preserved by all right translations, unlike a (two-sided) ordered group, where both right and left translations must preserve the order | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Algebra | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Order, Lattices, Ordered Algebraic Structures | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Permutationsgruppe |0 (DE-588)4173833-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geordnete Gruppe |0 (DE-588)4156745-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Geordnete Gruppe |0 (DE-588)4156745-6 |D s |
689 | 0 | 1 | |a Permutationsgruppe |0 (DE-588)4173833-0 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-3443-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856055 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092789239808 |
---|---|
any_adam_object | |
author | Holland, W. Charles |
author_facet | Holland, W. Charles |
author_role | aut |
author_sort | Holland, W. Charles |
author_variant | w c h wc wch |
building | Verbundindex |
bvnumber | BV042420638 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905447659 (DE-599)BVBBV042420638 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-3443-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03286nmm a2200529zcb4500</leader><controlfield tag="001">BV042420638</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461334439</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-3443-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461334453</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-3445-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-3443-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905447659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420638</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Holland, W. Charles</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ordered Groups and Infinite Permutation Groups</subfield><subfield code="c">edited by W. Charles Holland</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 248 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">354</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The subjects of ordered groups and of infinite permutation groups have long en joyed a symbiotic relationship. Although the two subjects come from very different sources, they have in certain ways come together, and each has derived considerable benefit from the other. My own personal contact with this interaction began in 1961. I had done Ph. D. work on sequence convergence in totally ordered groups under the direction of Paul Conrad. In the process, I had encountered "pseudo-convergent" sequences in an ordered group G, which are like Cauchy sequences, except that the differences be tween terms of large index approach not 0 but a convex subgroup G of G. If G is normal, then such sequences are conveniently described as Cauchy sequences in the quotient ordered group GIG. If G is not normal, of course GIG has no group structure, though it is still a totally ordered set. The best that can be said is that the elements of G permute GIG in an order-preserving fashion. In independent investigations around that time, both P. Conrad and P. Cohn had showed that a group admits a total right ordering if and only if the group is a group of automor phisms of a totally ordered set. (In a right ordered group, the order is required to be preserved by all right translations, unlike a (two-sided) ordered group, where both right and left translations must preserve the order</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order, Lattices, Ordered Algebraic Structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geordnete Gruppe</subfield><subfield code="0">(DE-588)4156745-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geordnete Gruppe</subfield><subfield code="0">(DE-588)4156745-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Permutationsgruppe</subfield><subfield code="0">(DE-588)4173833-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-3443-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856055</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042420638 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461334439 9781461334453 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856055 |
oclc_num | 905447659 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 248 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer US |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Holland, W. Charles Verfasser aut Ordered Groups and Infinite Permutation Groups edited by W. Charles Holland Boston, MA Springer US 1996 1 Online-Ressource (VIII, 248 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 354 The subjects of ordered groups and of infinite permutation groups have long en joyed a symbiotic relationship. Although the two subjects come from very different sources, they have in certain ways come together, and each has derived considerable benefit from the other. My own personal contact with this interaction began in 1961. I had done Ph. D. work on sequence convergence in totally ordered groups under the direction of Paul Conrad. In the process, I had encountered "pseudo-convergent" sequences in an ordered group G, which are like Cauchy sequences, except that the differences be tween terms of large index approach not 0 but a convex subgroup G of G. If G is normal, then such sequences are conveniently described as Cauchy sequences in the quotient ordered group GIG. If G is not normal, of course GIG has no group structure, though it is still a totally ordered set. The best that can be said is that the elements of G permute GIG in an order-preserving fashion. In independent investigations around that time, both P. Conrad and P. Cohn had showed that a group admits a total right ordering if and only if the group is a group of automor phisms of a totally ordered set. (In a right ordered group, the order is required to be preserved by all right translations, unlike a (two-sided) ordered group, where both right and left translations must preserve the order Mathematics Group theory Algebra Group Theory and Generalizations Order, Lattices, Ordered Algebraic Structures Mathematik Permutationsgruppe (DE-588)4173833-0 gnd rswk-swf Geordnete Gruppe (DE-588)4156745-6 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Geordnete Gruppe (DE-588)4156745-6 s Permutationsgruppe (DE-588)4173833-0 s 2\p DE-604 https://doi.org/10.1007/978-1-4613-3443-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Holland, W. Charles Ordered Groups and Infinite Permutation Groups Mathematics Group theory Algebra Group Theory and Generalizations Order, Lattices, Ordered Algebraic Structures Mathematik Permutationsgruppe (DE-588)4173833-0 gnd Geordnete Gruppe (DE-588)4156745-6 gnd |
subject_GND | (DE-588)4173833-0 (DE-588)4156745-6 (DE-588)4143413-4 |
title | Ordered Groups and Infinite Permutation Groups |
title_auth | Ordered Groups and Infinite Permutation Groups |
title_exact_search | Ordered Groups and Infinite Permutation Groups |
title_full | Ordered Groups and Infinite Permutation Groups edited by W. Charles Holland |
title_fullStr | Ordered Groups and Infinite Permutation Groups edited by W. Charles Holland |
title_full_unstemmed | Ordered Groups and Infinite Permutation Groups edited by W. Charles Holland |
title_short | Ordered Groups and Infinite Permutation Groups |
title_sort | ordered groups and infinite permutation groups |
topic | Mathematics Group theory Algebra Group Theory and Generalizations Order, Lattices, Ordered Algebraic Structures Mathematik Permutationsgruppe (DE-588)4173833-0 gnd Geordnete Gruppe (DE-588)4156745-6 gnd |
topic_facet | Mathematics Group theory Algebra Group Theory and Generalizations Order, Lattices, Ordered Algebraic Structures Mathematik Permutationsgruppe Geordnete Gruppe Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4613-3443-9 |
work_keys_str_mv | AT hollandwcharles orderedgroupsandinfinitepermutationgroups |