Applications of Interval Computations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1996
|
Schriftenreihe: | Applied Optimization
3 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Primary Audience for the Book • Specialists in numerical computations who are interested in algorithms with automatic result verification. • Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc cessful applications. • Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli cations of numerical methods with automatic result verification, that were pre sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the operands range over the domain. For example, [0. 9,1. 1] + [2. 9,3. 1] = [3. 8,4. 2], where [3. 8,4. 2] = {x + ylx E [0. 9,1. 1] and y E [3. 8,4. 2]}. The power of interval arithmetic comes from the fact that (i) the elementary operations and standard functions can be computed for intervals with formulas and subroutines; and (ii) directed roundings can be used, so that the images of these operations (e. g |
Beschreibung: | 1 Online-Ressource (XVIII, 428 p) |
ISBN: | 9781461334408 9781461334422 |
ISSN: | 1384-6485 |
DOI: | 10.1007/978-1-4613-3440-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420637 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461334408 |c Online |9 978-1-4613-3440-8 | ||
020 | |a 9781461334422 |c Print |9 978-1-4613-3442-2 | ||
024 | 7 | |a 10.1007/978-1-4613-3440-8 |2 doi | |
035 | |a (OCoLC)1184270498 | ||
035 | |a (DE-599)BVBBV042420637 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 003.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kearfott, R. Baker |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applications of Interval Computations |c edited by R. Baker Kearfott, Vladik Kreinovich |
264 | 1 | |a Boston, MA |b Springer US |c 1996 | |
300 | |a 1 Online-Ressource (XVIII, 428 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Optimization |v 3 |x 1384-6485 | |
500 | |a Primary Audience for the Book • Specialists in numerical computations who are interested in algorithms with automatic result verification. • Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc cessful applications. • Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli cations of numerical methods with automatic result verification, that were pre sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the operands range over the domain. For example, [0. 9,1. 1] + [2. 9,3. 1] = [3. 8,4. 2], where [3. 8,4. 2] = {x + ylx E [0. 9,1. 1] and y E [3. 8,4. 2]}. The power of interval arithmetic comes from the fact that (i) the elementary operations and standard functions can be computed for intervals with formulas and subroutines; and (ii) directed roundings can be used, so that the images of these operations (e. g | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Informatik | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Intervallalgebra |0 (DE-588)4139152-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Intervallalgebra |0 (DE-588)4139152-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Kreinovich, Vladik |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-3440-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856054 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092790288384 |
---|---|
any_adam_object | |
author | Kearfott, R. Baker |
author_facet | Kearfott, R. Baker |
author_role | aut |
author_sort | Kearfott, R. Baker |
author_variant | r b k rb rbk |
building | Verbundindex |
bvnumber | BV042420637 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184270498 (DE-599)BVBBV042420637 |
dewey-full | 003.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.3 |
dewey-search | 003.3 |
dewey-sort | 13.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4613-3440-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03560nmm a2200577zcb4500</leader><controlfield tag="001">BV042420637</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461334408</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-3440-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461334422</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-3442-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-3440-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184270498</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420637</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kearfott, R. Baker</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of Interval Computations</subfield><subfield code="c">edited by R. Baker Kearfott, Vladik Kreinovich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 428 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Optimization</subfield><subfield code="v">3</subfield><subfield code="x">1384-6485</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Primary Audience for the Book • Specialists in numerical computations who are interested in algorithms with automatic result verification. • Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc cessful applications. • Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli cations of numerical methods with automatic result verification, that were pre sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the operands range over the domain. For example, [0. 9,1. 1] + [2. 9,3. 1] = [3. 8,4. 2], where [3. 8,4. 2] = {x + ylx E [0. 9,1. 1] and y E [3. 8,4. 2]}. The power of interval arithmetic comes from the fact that (i) the elementary operations and standard functions can be computed for intervals with formulas and subroutines; and (ii) directed roundings can be used, so that the images of these operations (e. g</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intervallalgebra</subfield><subfield code="0">(DE-588)4139152-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Intervallalgebra</subfield><subfield code="0">(DE-588)4139152-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kreinovich, Vladik</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-3440-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856054</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042420637 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461334408 9781461334422 |
issn | 1384-6485 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856054 |
oclc_num | 1184270498 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 428 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer US |
record_format | marc |
series2 | Applied Optimization |
spelling | Kearfott, R. Baker Verfasser aut Applications of Interval Computations edited by R. Baker Kearfott, Vladik Kreinovich Boston, MA Springer US 1996 1 Online-Ressource (XVIII, 428 p) txt rdacontent c rdamedia cr rdacarrier Applied Optimization 3 1384-6485 Primary Audience for the Book • Specialists in numerical computations who are interested in algorithms with automatic result verification. • Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc cessful applications. • Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli cations of numerical methods with automatic result verification, that were pre sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the operands range over the domain. For example, [0. 9,1. 1] + [2. 9,3. 1] = [3. 8,4. 2], where [3. 8,4. 2] = {x + ylx E [0. 9,1. 1] and y E [3. 8,4. 2]}. The power of interval arithmetic comes from the fact that (i) the elementary operations and standard functions can be computed for intervals with formulas and subroutines; and (ii) directed roundings can be used, so that the images of these operations (e. g Mathematics Artificial intelligence Computer science / Mathematics Mathematical optimization Mathematical Modeling and Industrial Mathematics Computational Mathematics and Numerical Analysis Calculus of Variations and Optimal Control; Optimization Artificial Intelligence (incl. Robotics) Informatik Künstliche Intelligenz Mathematik Intervallalgebra (DE-588)4139152-4 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content Intervallalgebra (DE-588)4139152-4 s 2\p DE-604 Kreinovich, Vladik Sonstige oth https://doi.org/10.1007/978-1-4613-3440-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kearfott, R. Baker Applications of Interval Computations Mathematics Artificial intelligence Computer science / Mathematics Mathematical optimization Mathematical Modeling and Industrial Mathematics Computational Mathematics and Numerical Analysis Calculus of Variations and Optimal Control; Optimization Artificial Intelligence (incl. Robotics) Informatik Künstliche Intelligenz Mathematik Intervallalgebra (DE-588)4139152-4 gnd |
subject_GND | (DE-588)4139152-4 (DE-588)1071861417 |
title | Applications of Interval Computations |
title_auth | Applications of Interval Computations |
title_exact_search | Applications of Interval Computations |
title_full | Applications of Interval Computations edited by R. Baker Kearfott, Vladik Kreinovich |
title_fullStr | Applications of Interval Computations edited by R. Baker Kearfott, Vladik Kreinovich |
title_full_unstemmed | Applications of Interval Computations edited by R. Baker Kearfott, Vladik Kreinovich |
title_short | Applications of Interval Computations |
title_sort | applications of interval computations |
topic | Mathematics Artificial intelligence Computer science / Mathematics Mathematical optimization Mathematical Modeling and Industrial Mathematics Computational Mathematics and Numerical Analysis Calculus of Variations and Optimal Control; Optimization Artificial Intelligence (incl. Robotics) Informatik Künstliche Intelligenz Mathematik Intervallalgebra (DE-588)4139152-4 gnd |
topic_facet | Mathematics Artificial intelligence Computer science / Mathematics Mathematical optimization Mathematical Modeling and Industrial Mathematics Computational Mathematics and Numerical Analysis Calculus of Variations and Optimal Control; Optimization Artificial Intelligence (incl. Robotics) Informatik Künstliche Intelligenz Mathematik Intervallalgebra Konferenzschrift |
url | https://doi.org/10.1007/978-1-4613-3440-8 |
work_keys_str_mv | AT kearfottrbaker applicationsofintervalcomputations AT kreinovichvladik applicationsofintervalcomputations |