Multilevel Optimization: Algorithms and Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1998
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
20 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Researchers working with nonlinear programming often claim "the word is non linear" indicating that real applications require nonlinear modeling. The same is true for other areas such as multi-objective programming (there are always several goals in a real application), stochastic programming (all data is uncer tain and therefore stochastic models should be used), and so forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision makers, and decisions are made at different levels in this hierarchy. One way to handle such hierar chies is to focus on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that focuses on the whole hierar chy structure. In terms of modeling, the constraint domain associated with a multilevel programming problem is implicitly determined by a series of opti mization problems which must be solved in a predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and one follower (associated with the lower level) |
Beschreibung: | 1 Online-Ressource (412p) |
ISBN: | 9781461303077 9781461379898 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4613-0307-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420600 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461303077 |c Online |9 978-1-4613-0307-7 | ||
020 | |a 9781461379898 |c Print |9 978-1-4613-7989-8 | ||
024 | 7 | |a 10.1007/978-1-4613-0307-7 |2 doi | |
035 | |a (OCoLC)1184303012 | ||
035 | |a (DE-599)BVBBV042420600 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Migdalas, Athanasios |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multilevel Optimization: Algorithms and Applications |c edited by Athanasios Migdalas, Panos M. Pardalos, Peter Värbrand |
264 | 1 | |a Boston, MA |b Springer US |c 1998 | |
300 | |a 1 Online-Ressource (412p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Nonconvex Optimization and Its Applications |v 20 |x 1571-568X | |
500 | |a Researchers working with nonlinear programming often claim "the word is non linear" indicating that real applications require nonlinear modeling. The same is true for other areas such as multi-objective programming (there are always several goals in a real application), stochastic programming (all data is uncer tain and therefore stochastic models should be used), and so forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision makers, and decisions are made at different levels in this hierarchy. One way to handle such hierar chies is to focus on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that focuses on the whole hierar chy structure. In terms of modeling, the constraint domain associated with a multilevel programming problem is implicitly determined by a series of opti mization problems which must be solved in a predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and one follower (associated with the lower level) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Information theory | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Optimization | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mehrebenenoptimierung |0 (DE-588)4634607-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Mehrebenenoptimierung |0 (DE-588)4634607-7 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Pardalos, Panos M. |e Sonstige |4 oth | |
700 | 1 | |a Värbrand, Peter |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-0307-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856017 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092696965120 |
---|---|
any_adam_object | |
author | Migdalas, Athanasios |
author_facet | Migdalas, Athanasios |
author_role | aut |
author_sort | Migdalas, Athanasios |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV042420600 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184303012 (DE-599)BVBBV042420600 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-0307-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03136nmm a2200553zcb4500</leader><controlfield tag="001">BV042420600</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461303077</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-0307-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461379898</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-7989-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-0307-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184303012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420600</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Migdalas, Athanasios</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multilevel Optimization: Algorithms and Applications</subfield><subfield code="c">edited by Athanasios Migdalas, Panos M. Pardalos, Peter Värbrand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (412p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">20</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Researchers working with nonlinear programming often claim "the word is non linear" indicating that real applications require nonlinear modeling. The same is true for other areas such as multi-objective programming (there are always several goals in a real application), stochastic programming (all data is uncer tain and therefore stochastic models should be used), and so forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision makers, and decisions are made at different levels in this hierarchy. One way to handle such hierar chies is to focus on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that focuses on the whole hierar chy structure. In terms of modeling, the constraint domain associated with a multilevel programming problem is implicitly determined by a series of opti mization problems which must be solved in a predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and one follower (associated with the lower level)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrebenenoptimierung</subfield><subfield code="0">(DE-588)4634607-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrebenenoptimierung</subfield><subfield code="0">(DE-588)4634607-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pardalos, Panos M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Värbrand, Peter</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-0307-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856017</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042420600 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461303077 9781461379898 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856017 |
oclc_num | 1184303012 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (412p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer US |
record_format | marc |
series2 | Nonconvex Optimization and Its Applications |
spelling | Migdalas, Athanasios Verfasser aut Multilevel Optimization: Algorithms and Applications edited by Athanasios Migdalas, Panos M. Pardalos, Peter Värbrand Boston, MA Springer US 1998 1 Online-Ressource (412p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 20 1571-568X Researchers working with nonlinear programming often claim "the word is non linear" indicating that real applications require nonlinear modeling. The same is true for other areas such as multi-objective programming (there are always several goals in a real application), stochastic programming (all data is uncer tain and therefore stochastic models should be used), and so forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision makers, and decisions are made at different levels in this hierarchy. One way to handle such hierar chies is to focus on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that focuses on the whole hierar chy structure. In terms of modeling, the constraint domain associated with a multilevel programming problem is implicitly determined by a series of opti mization problems which must be solved in a predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and one follower (associated with the lower level) Mathematics Information theory Algorithms Mathematical optimization Optimization Mathematical Modeling and Industrial Mathematics Theory of Computation Mathematik Mehrebenenoptimierung (DE-588)4634607-7 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Mehrebenenoptimierung (DE-588)4634607-7 s 2\p DE-604 Pardalos, Panos M. Sonstige oth Värbrand, Peter Sonstige oth https://doi.org/10.1007/978-1-4613-0307-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Migdalas, Athanasios Multilevel Optimization: Algorithms and Applications Mathematics Information theory Algorithms Mathematical optimization Optimization Mathematical Modeling and Industrial Mathematics Theory of Computation Mathematik Mehrebenenoptimierung (DE-588)4634607-7 gnd |
subject_GND | (DE-588)4634607-7 (DE-588)4143413-4 |
title | Multilevel Optimization: Algorithms and Applications |
title_auth | Multilevel Optimization: Algorithms and Applications |
title_exact_search | Multilevel Optimization: Algorithms and Applications |
title_full | Multilevel Optimization: Algorithms and Applications edited by Athanasios Migdalas, Panos M. Pardalos, Peter Värbrand |
title_fullStr | Multilevel Optimization: Algorithms and Applications edited by Athanasios Migdalas, Panos M. Pardalos, Peter Värbrand |
title_full_unstemmed | Multilevel Optimization: Algorithms and Applications edited by Athanasios Migdalas, Panos M. Pardalos, Peter Värbrand |
title_short | Multilevel Optimization: Algorithms and Applications |
title_sort | multilevel optimization algorithms and applications |
topic | Mathematics Information theory Algorithms Mathematical optimization Optimization Mathematical Modeling and Industrial Mathematics Theory of Computation Mathematik Mehrebenenoptimierung (DE-588)4634607-7 gnd |
topic_facet | Mathematics Information theory Algorithms Mathematical optimization Optimization Mathematical Modeling and Industrial Mathematics Theory of Computation Mathematik Mehrebenenoptimierung Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4613-0307-7 |
work_keys_str_mv | AT migdalasathanasios multileveloptimizationalgorithmsandapplications AT pardalospanosm multileveloptimizationalgorithmsandapplications AT varbrandpeter multileveloptimizationalgorithmsandapplications |