Vector Variational Inequalities and Vector Equilibria: Mathematical Theories
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
38 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the fifties and sixties, several real problems, old and new, especially in Physics, Mechanics, Fluidodynamics, Structural Engi neering, have shown the need of new mathematical models for studying the equilibrium of a system. This has led to the formulation of Variational Inequalities (by G. Stampacchia), and to the development of Complementarity Systems (by W.S. Dorn, G.B. Dantzig, R.W. Cottle, O.L. Mangasarian et al.) with important applications in the elasto-plastic field (initiated by G. Maier). The great advantage of these models is that the equilibrium is not necessarily the extremum of functional, like energy, so that no such functional must be supposed to exist. In the same decades, in some fields like Control Theory, Networks, Industrial Systems, Logistics, Management Science, there has been a strong request of mathmatical models for optimizing situations where there are concurrent objectives, so that Vector Optimization (initiated by W. Pareto) has received new impetus. With regard to equilibrium problems, Vector Optimization has the above-mentioned drawback of being obliged to assume the existence of a (vector) functional. Therefore, at the end of the seventies the study of Vector Variational Inequalities began with the scope of exploiting the advantages of both variational and vector models. This volume puts together most of the recent mathematical results in Vector Variational Inequalities with the purpose of contributing to further research |
Beschreibung: | 1 Online-Ressource (XIV, 526 p) |
ISBN: | 9781461302995 9781461379850 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4613-0299-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420596 | ||
003 | DE-604 | ||
005 | 20170925 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461302995 |c Online |9 978-1-4613-0299-5 | ||
020 | |a 9781461379850 |c Print |9 978-1-4613-7985-0 | ||
024 | 7 | |a 10.1007/978-1-4613-0299-5 |2 doi | |
035 | |a (OCoLC)879623346 | ||
035 | |a (DE-599)BVBBV042420596 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Vector Variational Inequalities and Vector Equilibria |b Mathematical Theories |c edited by Franco Giannessi |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (XIV, 526 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Nonconvex Optimization and Its Applications |v 38 |x 1571-568X | |
500 | |a In the fifties and sixties, several real problems, old and new, especially in Physics, Mechanics, Fluidodynamics, Structural Engi neering, have shown the need of new mathematical models for studying the equilibrium of a system. This has led to the formulation of Variational Inequalities (by G. Stampacchia), and to the development of Complementarity Systems (by W.S. Dorn, G.B. Dantzig, R.W. Cottle, O.L. Mangasarian et al.) with important applications in the elasto-plastic field (initiated by G. Maier). The great advantage of these models is that the equilibrium is not necessarily the extremum of functional, like energy, so that no such functional must be supposed to exist. In the same decades, in some fields like Control Theory, Networks, Industrial Systems, Logistics, Management Science, there has been a strong request of mathmatical models for optimizing situations where there are concurrent objectives, so that Vector Optimization (initiated by W. Pareto) has received new impetus. With regard to equilibrium problems, Vector Optimization has the above-mentioned drawback of being obliged to assume the existence of a (vector) functional. Therefore, at the end of the seventies the study of Vector Variational Inequalities began with the scope of exploiting the advantages of both variational and vector models. This volume puts together most of the recent mathematical results in Vector Variational Inequalities with the purpose of contributing to further research | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Variationsungleichung |0 (DE-588)4187420-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologischer Vektorraum |0 (DE-588)4122383-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsungleichung |0 (DE-588)4187420-1 |D s |
689 | 0 | 1 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |D s |
689 | 0 | 2 | |a Topologischer Vektorraum |0 (DE-588)4122383-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Giannessi, Franco |4 edt | |
830 | 0 | |a Nonconvex Optimization and Its Applications |v 38 |w (DE-604)BV010085908 |9 38 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-0299-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856013 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092690673664 |
---|---|
any_adam_object | |
author2 | Giannessi, Franco |
author2_role | edt |
author2_variant | f g fg |
author_facet | Giannessi, Franco |
building | Verbundindex |
bvnumber | BV042420596 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879623346 (DE-599)BVBBV042420596 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-0299-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03624nmm a2200565zcb4500</leader><controlfield tag="001">BV042420596</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170925 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461302995</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-0299-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461379850</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-7985-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-0299-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623346</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420596</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vector Variational Inequalities and Vector Equilibria</subfield><subfield code="b">Mathematical Theories</subfield><subfield code="c">edited by Franco Giannessi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 526 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">38</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the fifties and sixties, several real problems, old and new, especially in Physics, Mechanics, Fluidodynamics, Structural Engi neering, have shown the need of new mathematical models for studying the equilibrium of a system. This has led to the formulation of Variational Inequalities (by G. Stampacchia), and to the development of Complementarity Systems (by W.S. Dorn, G.B. Dantzig, R.W. Cottle, O.L. Mangasarian et al.) with important applications in the elasto-plastic field (initiated by G. Maier). The great advantage of these models is that the equilibrium is not necessarily the extremum of functional, like energy, so that no such functional must be supposed to exist. In the same decades, in some fields like Control Theory, Networks, Industrial Systems, Logistics, Management Science, there has been a strong request of mathmatical models for optimizing situations where there are concurrent objectives, so that Vector Optimization (initiated by W. Pareto) has received new impetus. With regard to equilibrium problems, Vector Optimization has the above-mentioned drawback of being obliged to assume the existence of a (vector) functional. Therefore, at the end of the seventies the study of Vector Variational Inequalities began with the scope of exploiting the advantages of both variational and vector models. This volume puts together most of the recent mathematical results in Vector Variational Inequalities with the purpose of contributing to further research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Vektorraum</subfield><subfield code="0">(DE-588)4122383-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Topologischer Vektorraum</subfield><subfield code="0">(DE-588)4122383-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giannessi, Franco</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">38</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-0299-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856013</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420596 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461302995 9781461379850 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856013 |
oclc_num | 879623346 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 526 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series | Nonconvex Optimization and Its Applications |
series2 | Nonconvex Optimization and Its Applications |
spelling | Vector Variational Inequalities and Vector Equilibria Mathematical Theories edited by Franco Giannessi Boston, MA Springer US 2000 1 Online-Ressource (XIV, 526 p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 38 1571-568X In the fifties and sixties, several real problems, old and new, especially in Physics, Mechanics, Fluidodynamics, Structural Engi neering, have shown the need of new mathematical models for studying the equilibrium of a system. This has led to the formulation of Variational Inequalities (by G. Stampacchia), and to the development of Complementarity Systems (by W.S. Dorn, G.B. Dantzig, R.W. Cottle, O.L. Mangasarian et al.) with important applications in the elasto-plastic field (initiated by G. Maier). The great advantage of these models is that the equilibrium is not necessarily the extremum of functional, like energy, so that no such functional must be supposed to exist. In the same decades, in some fields like Control Theory, Networks, Industrial Systems, Logistics, Management Science, there has been a strong request of mathmatical models for optimizing situations where there are concurrent objectives, so that Vector Optimization (initiated by W. Pareto) has received new impetus. With regard to equilibrium problems, Vector Optimization has the above-mentioned drawback of being obliged to assume the existence of a (vector) functional. Therefore, at the end of the seventies the study of Vector Variational Inequalities began with the scope of exploiting the advantages of both variational and vector models. This volume puts together most of the recent mathematical results in Vector Variational Inequalities with the purpose of contributing to further research Mathematics Systems theory Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Operations Research/Decision Theory Systems Theory, Control Mathematik Variationsungleichung (DE-588)4187420-1 gnd rswk-swf Mehrkriterielle Optimierung (DE-588)4610682-0 gnd rswk-swf Topologischer Vektorraum (DE-588)4122383-4 gnd rswk-swf Variationsungleichung (DE-588)4187420-1 s Mehrkriterielle Optimierung (DE-588)4610682-0 s Topologischer Vektorraum (DE-588)4122383-4 s 1\p DE-604 Giannessi, Franco edt Nonconvex Optimization and Its Applications 38 (DE-604)BV010085908 38 https://doi.org/10.1007/978-1-4613-0299-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vector Variational Inequalities and Vector Equilibria Mathematical Theories Nonconvex Optimization and Its Applications Mathematics Systems theory Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Operations Research/Decision Theory Systems Theory, Control Mathematik Variationsungleichung (DE-588)4187420-1 gnd Mehrkriterielle Optimierung (DE-588)4610682-0 gnd Topologischer Vektorraum (DE-588)4122383-4 gnd |
subject_GND | (DE-588)4187420-1 (DE-588)4610682-0 (DE-588)4122383-4 |
title | Vector Variational Inequalities and Vector Equilibria Mathematical Theories |
title_auth | Vector Variational Inequalities and Vector Equilibria Mathematical Theories |
title_exact_search | Vector Variational Inequalities and Vector Equilibria Mathematical Theories |
title_full | Vector Variational Inequalities and Vector Equilibria Mathematical Theories edited by Franco Giannessi |
title_fullStr | Vector Variational Inequalities and Vector Equilibria Mathematical Theories edited by Franco Giannessi |
title_full_unstemmed | Vector Variational Inequalities and Vector Equilibria Mathematical Theories edited by Franco Giannessi |
title_short | Vector Variational Inequalities and Vector Equilibria |
title_sort | vector variational inequalities and vector equilibria mathematical theories |
title_sub | Mathematical Theories |
topic | Mathematics Systems theory Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Operations Research/Decision Theory Systems Theory, Control Mathematik Variationsungleichung (DE-588)4187420-1 gnd Mehrkriterielle Optimierung (DE-588)4610682-0 gnd Topologischer Vektorraum (DE-588)4122383-4 gnd |
topic_facet | Mathematics Systems theory Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Operations Research/Decision Theory Systems Theory, Control Mathematik Variationsungleichung Mehrkriterielle Optimierung Topologischer Vektorraum |
url | https://doi.org/10.1007/978-1-4613-0299-5 |
volume_link | (DE-604)BV010085908 |
work_keys_str_mv | AT giannessifranco vectorvariationalinequalitiesandvectorequilibriamathematicaltheories |