Orthogonal Polynomials for Exponential Weights:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Schriftenreihe: | CMS Books in Mathematics, Ouvrages de mathématiques de la SMC
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The analysis of orthogonal polynomials associated with general weights was a major theme in classical analysis in the twentieth century, and undoubtedly will continue to grow in importance in the future. In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0; likewise the weight need not be even. The authors establish bounds and asymptotics for orthonormal and extremal polynomials, and their associated Christoffel functions. They deduce bounds on zeros of extremal and orthogonal polynomials, and also establish Markov- Bernstein and Nikolskii inequalities. The authors have collaborated actively since 1982 on various topics, and have published many joint papers, as well as a Memoir of the American Mathematical Society. The latter deals with a special case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials |
Beschreibung: | 1 Online-Ressource (XI, 476 p) |
ISBN: | 9781461302018 9781461265634 |
ISSN: | 1613-5237 |
DOI: | 10.1007/978-1-4613-0201-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420563 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461302018 |c Online |9 978-1-4613-0201-8 | ||
020 | |a 9781461265634 |c Print |9 978-1-4612-6563-4 | ||
024 | 7 | |a 10.1007/978-1-4613-0201-8 |2 doi | |
035 | |a (OCoLC)1184268341 | ||
035 | |a (DE-599)BVBBV042420563 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.482 |2 23 | |
082 | 0 | |a 512.55 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Levin, Eli |e Verfasser |4 aut | |
245 | 1 | 0 | |a Orthogonal Polynomials for Exponential Weights |c by Eli Levin, Doron S. Lubinsky |
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XI, 476 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC |x 1613-5237 | |
500 | |a The analysis of orthogonal polynomials associated with general weights was a major theme in classical analysis in the twentieth century, and undoubtedly will continue to grow in importance in the future. In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0; likewise the weight need not be even. The authors establish bounds and asymptotics for orthonormal and extremal polynomials, and their associated Christoffel functions. They deduce bounds on zeros of extremal and orthogonal polynomials, and also establish Markov- Bernstein and Nikolskii inequalities. The authors have collaborated actively since 1982 on various topics, and have published many joint papers, as well as a Memoir of the American Mathematical Society. The latter deals with a special case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Lubinsky, Doron S. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-0201-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855980 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092610981888 |
---|---|
any_adam_object | |
author | Levin, Eli |
author_facet | Levin, Eli |
author_role | aut |
author_sort | Levin, Eli |
author_variant | e l el |
building | Verbundindex |
bvnumber | BV042420563 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184268341 (DE-599)BVBBV042420563 |
dewey-full | 512.482 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 512.55 |
dewey-search | 512.482 512.55 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-0201-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02839nmm a2200493zc 4500</leader><controlfield tag="001">BV042420563</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461302018</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-0201-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461265634</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6563-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-0201-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184268341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420563</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levin, Eli</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal Polynomials for Exponential Weights</subfield><subfield code="c">by Eli Levin, Doron S. Lubinsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 476 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">CMS Books in Mathematics, Ouvrages de mathématiques de la SMC</subfield><subfield code="x">1613-5237</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The analysis of orthogonal polynomials associated with general weights was a major theme in classical analysis in the twentieth century, and undoubtedly will continue to grow in importance in the future. In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0; likewise the weight need not be even. The authors establish bounds and asymptotics for orthonormal and extremal polynomials, and their associated Christoffel functions. They deduce bounds on zeros of extremal and orthogonal polynomials, and also establish Markov- Bernstein and Nikolskii inequalities. The authors have collaborated actively since 1982 on various topics, and have published many joint papers, as well as a Memoir of the American Mathematical Society. The latter deals with a special case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lubinsky, Doron S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-0201-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855980</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420563 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461302018 9781461265634 |
issn | 1613-5237 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855980 |
oclc_num | 1184268341 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 476 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series2 | CMS Books in Mathematics, Ouvrages de mathématiques de la SMC |
spelling | Levin, Eli Verfasser aut Orthogonal Polynomials for Exponential Weights by Eli Levin, Doron S. Lubinsky New York, NY Springer New York 2001 1 Online-Ressource (XI, 476 p) txt rdacontent c rdamedia cr rdacarrier CMS Books in Mathematics, Ouvrages de mathématiques de la SMC 1613-5237 The analysis of orthogonal polynomials associated with general weights was a major theme in classical analysis in the twentieth century, and undoubtedly will continue to grow in importance in the future. In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0; likewise the weight need not be even. The authors establish bounds and asymptotics for orthonormal and extremal polynomials, and their associated Christoffel functions. They deduce bounds on zeros of extremal and orthogonal polynomials, and also establish Markov- Bernstein and Nikolskii inequalities. The authors have collaborated actively since 1982 on various topics, and have published many joint papers, as well as a Memoir of the American Mathematical Society. The latter deals with a special case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials Mathematics Topological Groups Combinatorics Topological Groups, Lie Groups Mathematik Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Orthogonale Polynome (DE-588)4172863-4 s 1\p DE-604 Lubinsky, Doron S. Sonstige oth https://doi.org/10.1007/978-1-4613-0201-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Levin, Eli Orthogonal Polynomials for Exponential Weights Mathematics Topological Groups Combinatorics Topological Groups, Lie Groups Mathematik Orthogonale Polynome (DE-588)4172863-4 gnd |
subject_GND | (DE-588)4172863-4 |
title | Orthogonal Polynomials for Exponential Weights |
title_auth | Orthogonal Polynomials for Exponential Weights |
title_exact_search | Orthogonal Polynomials for Exponential Weights |
title_full | Orthogonal Polynomials for Exponential Weights by Eli Levin, Doron S. Lubinsky |
title_fullStr | Orthogonal Polynomials for Exponential Weights by Eli Levin, Doron S. Lubinsky |
title_full_unstemmed | Orthogonal Polynomials for Exponential Weights by Eli Levin, Doron S. Lubinsky |
title_short | Orthogonal Polynomials for Exponential Weights |
title_sort | orthogonal polynomials for exponential weights |
topic | Mathematics Topological Groups Combinatorics Topological Groups, Lie Groups Mathematik Orthogonale Polynome (DE-588)4172863-4 gnd |
topic_facet | Mathematics Topological Groups Combinatorics Topological Groups, Lie Groups Mathematik Orthogonale Polynome |
url | https://doi.org/10.1007/978-1-4613-0201-8 |
work_keys_str_mv | AT levineli orthogonalpolynomialsforexponentialweights AT lubinskydorons orthogonalpolynomialsforexponentialweights |