Noise Reduction by Wavelet Thresholding:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Schriftenreihe: | Lecture Notes in Statistics
161 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Wavelet methods have become a widely spread tool in signal and image processing tasks. This book deals with statistical applications, especially wavelet based smoothing. The methods described in this text are examples of non-linear and nonparametric curve fitting. The book aims to contribute to the field both among statisticians and in the application oriented world (including but not limited to signals and images). Although it also contains extensive analyses of some existing methods, it has no intention whatsoever to be a complete overview of the field: the text would show too much bias towards my own algorithms. I rather present new material and own insights in the questions involved with wavelet based noise reduction. On the other hand, the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: sparsity, locality and multiresolution. Nearly all wavelet based methods exploit at least one of these properties in some or the other way. These notes present research results of the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with me. My research was financed by a grant (1995 - 1999) from the Flemish Institute for the Promotion of Scientific and Technological Research in the Industry (IWT) |
Beschreibung: | 1 Online-Ressource (XXI, 196 p) |
ISBN: | 9781461301455 9780387952444 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4613-0145-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420551 | ||
003 | DE-604 | ||
005 | 20230508 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461301455 |c Online |9 978-1-4613-0145-5 | ||
020 | |a 9780387952444 |c Print |9 978-0-387-95244-4 | ||
024 | 7 | |a 10.1007/978-1-4613-0145-5 |2 doi | |
035 | |a (OCoLC)863683395 | ||
035 | |a (DE-599)BVBBV042420551 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Jansen, Maarten |e Verfasser |4 aut | |
245 | 1 | 0 | |a Noise Reduction by Wavelet Thresholding |c by Maarten Jansen |
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XXI, 196 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Statistics |v 161 |x 0930-0325 | |
500 | |a Wavelet methods have become a widely spread tool in signal and image processing tasks. This book deals with statistical applications, especially wavelet based smoothing. The methods described in this text are examples of non-linear and nonparametric curve fitting. The book aims to contribute to the field both among statisticians and in the application oriented world (including but not limited to signals and images). Although it also contains extensive analyses of some existing methods, it has no intention whatsoever to be a complete overview of the field: the text would show too much bias towards my own algorithms. I rather present new material and own insights in the questions involved with wavelet based noise reduction. On the other hand, the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: sparsity, locality and multiresolution. Nearly all wavelet based methods exploit at least one of these properties in some or the other way. These notes present research results of the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with me. My research was financed by a grant (1995 - 1999) from the Flemish Institute for the Promotion of Scientific and Technological Research in the Industry (IWT) | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Signalverarbeitung |0 (DE-588)4054947-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geräuschminderung |0 (DE-588)4129292-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 0 | 1 | |a Geräuschminderung |0 (DE-588)4129292-3 |D s |
689 | 0 | 2 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Signalverarbeitung |0 (DE-588)4054947-1 |D s |
689 | 1 | 1 | |a Geräuschminderung |0 (DE-588)4129292-3 |D s |
689 | 1 | 2 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Lecture Notes in Statistics |v 161 |w (DE-604)BV036592911 |9 161 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-0145-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855968 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092588961792 |
---|---|
any_adam_object | |
author | Jansen, Maarten |
author_facet | Jansen, Maarten |
author_role | aut |
author_sort | Jansen, Maarten |
author_variant | m j mj |
building | Verbundindex |
bvnumber | BV042420551 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863683395 (DE-599)BVBBV042420551 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-0145-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03710nmm a2200577zcb4500</leader><controlfield tag="001">BV042420551</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230508 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461301455</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-0145-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387952444</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-95244-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-0145-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863683395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420551</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jansen, Maarten</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Noise Reduction by Wavelet Thresholding</subfield><subfield code="c">by Maarten Jansen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXI, 196 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">161</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Wavelet methods have become a widely spread tool in signal and image processing tasks. This book deals with statistical applications, especially wavelet based smoothing. The methods described in this text are examples of non-linear and nonparametric curve fitting. The book aims to contribute to the field both among statisticians and in the application oriented world (including but not limited to signals and images). Although it also contains extensive analyses of some existing methods, it has no intention whatsoever to be a complete overview of the field: the text would show too much bias towards my own algorithms. I rather present new material and own insights in the questions involved with wavelet based noise reduction. On the other hand, the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: sparsity, locality and multiresolution. Nearly all wavelet based methods exploit at least one of these properties in some or the other way. These notes present research results of the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with me. My research was financed by a grant (1995 - 1999) from the Flemish Institute for the Promotion of Scientific and Technological Research in the Industry (IWT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geräuschminderung</subfield><subfield code="0">(DE-588)4129292-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geräuschminderung</subfield><subfield code="0">(DE-588)4129292-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geräuschminderung</subfield><subfield code="0">(DE-588)4129292-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">161</subfield><subfield code="w">(DE-604)BV036592911</subfield><subfield code="9">161</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-0145-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855968</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420551 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461301455 9780387952444 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855968 |
oclc_num | 863683395 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXI, 196 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series | Lecture Notes in Statistics |
series2 | Lecture Notes in Statistics |
spelling | Jansen, Maarten Verfasser aut Noise Reduction by Wavelet Thresholding by Maarten Jansen New York, NY Springer New York 2001 1 Online-Ressource (XXI, 196 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 161 0930-0325 Wavelet methods have become a widely spread tool in signal and image processing tasks. This book deals with statistical applications, especially wavelet based smoothing. The methods described in this text are examples of non-linear and nonparametric curve fitting. The book aims to contribute to the field both among statisticians and in the application oriented world (including but not limited to signals and images). Although it also contains extensive analyses of some existing methods, it has no intention whatsoever to be a complete overview of the field: the text would show too much bias towards my own algorithms. I rather present new material and own insights in the questions involved with wavelet based noise reduction. On the other hand, the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: sparsity, locality and multiresolution. Nearly all wavelet based methods exploit at least one of these properties in some or the other way. These notes present research results of the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with me. My research was financed by a grant (1995 - 1999) from the Flemish Institute for the Promotion of Scientific and Technological Research in the Industry (IWT) Statistics Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistik Signalverarbeitung (DE-588)4054947-1 gnd rswk-swf Geräuschminderung (DE-588)4129292-3 gnd rswk-swf Wavelet (DE-588)4215427-3 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 s Geräuschminderung (DE-588)4129292-3 s Wavelet (DE-588)4215427-3 s 1\p DE-604 Signalverarbeitung (DE-588)4054947-1 s 2\p DE-604 Lecture Notes in Statistics 161 (DE-604)BV036592911 161 https://doi.org/10.1007/978-1-4613-0145-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jansen, Maarten Noise Reduction by Wavelet Thresholding Lecture Notes in Statistics Statistics Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistik Signalverarbeitung (DE-588)4054947-1 gnd Geräuschminderung (DE-588)4129292-3 gnd Wavelet (DE-588)4215427-3 gnd Bildverarbeitung (DE-588)4006684-8 gnd |
subject_GND | (DE-588)4054947-1 (DE-588)4129292-3 (DE-588)4215427-3 (DE-588)4006684-8 |
title | Noise Reduction by Wavelet Thresholding |
title_auth | Noise Reduction by Wavelet Thresholding |
title_exact_search | Noise Reduction by Wavelet Thresholding |
title_full | Noise Reduction by Wavelet Thresholding by Maarten Jansen |
title_fullStr | Noise Reduction by Wavelet Thresholding by Maarten Jansen |
title_full_unstemmed | Noise Reduction by Wavelet Thresholding by Maarten Jansen |
title_short | Noise Reduction by Wavelet Thresholding |
title_sort | noise reduction by wavelet thresholding |
topic | Statistics Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistik Signalverarbeitung (DE-588)4054947-1 gnd Geräuschminderung (DE-588)4129292-3 gnd Wavelet (DE-588)4215427-3 gnd Bildverarbeitung (DE-588)4006684-8 gnd |
topic_facet | Statistics Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistik Signalverarbeitung Geräuschminderung Wavelet Bildverarbeitung |
url | https://doi.org/10.1007/978-1-4613-0145-5 |
volume_link | (DE-604)BV036592911 |
work_keys_str_mv | AT jansenmaarten noisereductionbywaveletthresholding |