Geometric Methods and Applications: For Computer Science and Engineering
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Schriftenreihe: | Texts in Applied Mathematics
38 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics, which sometimes do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine geometry, projective geometry, Euclidean geometry, basics of differential geometry and Lie groups, and a glimpse of computational geometry (convex sets, Voronoi diagrams and Delaunay triangulations) and explores many of the practical applications of geometry. Some of these applications include computer vision (camera calibration) efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers |
Beschreibung: | 1 Online-Ressource (XXI, 566 p) |
ISBN: | 9781461301370 9781461265092 |
ISSN: | 0939-2475 |
DOI: | 10.1007/978-1-4613-0137-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420549 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461301370 |c Online |9 978-1-4613-0137-0 | ||
020 | |a 9781461265092 |c Print |9 978-1-4612-6509-2 | ||
024 | 7 | |a 10.1007/978-1-4613-0137-0 |2 doi | |
035 | |a (OCoLC)1184488329 | ||
035 | |a (DE-599)BVBBV042420549 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gallier, Jean |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Methods and Applications |b For Computer Science and Engineering |c by Jean Gallier |
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XXI, 566 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts in Applied Mathematics |v 38 |x 0939-2475 | |
500 | |a As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics, which sometimes do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine geometry, projective geometry, Euclidean geometry, basics of differential geometry and Lie groups, and a glimpse of computational geometry (convex sets, Voronoi diagrams and Delaunay triangulations) and explores many of the practical applications of geometry. Some of these applications include computer vision (camera calibration) efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-0137-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855966 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092598398976 |
---|---|
any_adam_object | |
author | Gallier, Jean |
author_facet | Gallier, Jean |
author_role | aut |
author_sort | Gallier, Jean |
author_variant | j g jg |
building | Verbundindex |
bvnumber | BV042420549 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184488329 (DE-599)BVBBV042420549 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-0137-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02623nmm a2200445zcb4500</leader><controlfield tag="001">BV042420549</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461301370</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-0137-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461265092</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6509-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-0137-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184488329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420549</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gallier, Jean</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Methods and Applications</subfield><subfield code="b">For Computer Science and Engineering</subfield><subfield code="c">by Jean Gallier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXI, 566 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in Applied Mathematics</subfield><subfield code="v">38</subfield><subfield code="x">0939-2475</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics, which sometimes do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine geometry, projective geometry, Euclidean geometry, basics of differential geometry and Lie groups, and a glimpse of computational geometry (convex sets, Voronoi diagrams and Delaunay triangulations) and explores many of the practical applications of geometry. Some of these applications include computer vision (camera calibration) efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-0137-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855966</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420549 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461301370 9781461265092 |
issn | 0939-2475 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855966 |
oclc_num | 1184488329 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXI, 566 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series2 | Texts in Applied Mathematics |
spelling | Gallier, Jean Verfasser aut Geometric Methods and Applications For Computer Science and Engineering by Jean Gallier New York, NY Springer New York 2001 1 Online-Ressource (XXI, 566 p) txt rdacontent c rdamedia cr rdacarrier Texts in Applied Mathematics 38 0939-2475 As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics, which sometimes do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine geometry, projective geometry, Euclidean geometry, basics of differential geometry and Lie groups, and a glimpse of computational geometry (convex sets, Voronoi diagrams and Delaunay triangulations) and explores many of the practical applications of geometry. Some of these applications include computer vision (camera calibration) efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers Mathematics Geometry Mathematik Geometrie (DE-588)4020236-7 gnd rswk-swf Geometrie (DE-588)4020236-7 s 1\p DE-604 https://doi.org/10.1007/978-1-4613-0137-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gallier, Jean Geometric Methods and Applications For Computer Science and Engineering Mathematics Geometry Mathematik Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4020236-7 |
title | Geometric Methods and Applications For Computer Science and Engineering |
title_auth | Geometric Methods and Applications For Computer Science and Engineering |
title_exact_search | Geometric Methods and Applications For Computer Science and Engineering |
title_full | Geometric Methods and Applications For Computer Science and Engineering by Jean Gallier |
title_fullStr | Geometric Methods and Applications For Computer Science and Engineering by Jean Gallier |
title_full_unstemmed | Geometric Methods and Applications For Computer Science and Engineering by Jean Gallier |
title_short | Geometric Methods and Applications |
title_sort | geometric methods and applications for computer science and engineering |
title_sub | For Computer Science and Engineering |
topic | Mathematics Geometry Mathematik Geometrie (DE-588)4020236-7 gnd |
topic_facet | Mathematics Geometry Mathematik Geometrie |
url | https://doi.org/10.1007/978-1-4613-0137-0 |
work_keys_str_mv | AT gallierjean geometricmethodsandapplicationsforcomputerscienceandengineering |