Transport in Transition Regimes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2004
|
Schriftenreihe: | The IMA Volumes in Mathematics and its Applications
135 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wide range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc |
Beschreibung: | 1 Online-Ressource (X, 301 p) |
ISBN: | 9781461300175 9781461265078 |
ISSN: | 0940-6573 |
DOI: | 10.1007/978-1-4613-0017-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420520 | ||
003 | DE-604 | ||
005 | 20200124 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781461300175 |c Online |9 978-1-4613-0017-5 | ||
020 | |a 9781461265078 |c Print |9 978-1-4612-6507-8 | ||
024 | 7 | |a 10.1007/978-1-4613-0017-5 |2 doi | |
035 | |a (OCoLC)869868617 | ||
035 | |a (DE-599)BVBBV042420520 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Abdallah, Naoufel Ben |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transport in Transition Regimes |c edited by Naoufel Ben Abdallah, Irene M. Gamba, Christian Ringhofer, Anton Arnold, Robert T. Glassey, Pierre Degond, C. David Levermore |
264 | 1 | |a New York, NY |b Springer New York |c 2004 | |
300 | |a 1 Online-Ressource (X, 301 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The IMA Volumes in Mathematics and its Applications |v 135 |x 0940-6573 | |
500 | |a IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wide range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Optical materials | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Optical and Electronic Materials | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Classical Continuum Physics | |
650 | 4 | |a Condensed Matter Physics | |
650 | 4 | |a Quantum Optics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Gamba, Irene M. |e Sonstige |4 oth | |
700 | 1 | |a Ringhofer, Christian |e Sonstige |4 oth | |
700 | 1 | |a Arnold, Anton |e Sonstige |4 oth | |
700 | 1 | |a Glassey, Robert |d 1946-2020 |e Sonstige |0 (DE-588)1203407009 |4 oth | |
700 | 1 | |a Degond, Pierre |e Sonstige |4 oth | |
700 | 1 | |a Levermore, C. David |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-0017-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855937 |
Datensatz im Suchindex
_version_ | 1804153092522901504 |
---|---|
any_adam_object | |
author | Abdallah, Naoufel Ben |
author_GND | (DE-588)1203407009 |
author_facet | Abdallah, Naoufel Ben |
author_role | aut |
author_sort | Abdallah, Naoufel Ben |
author_variant | n b a nb nba |
building | Verbundindex |
bvnumber | BV042420520 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869868617 (DE-599)BVBBV042420520 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-0017-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03119nmm a2200553zcb4500</leader><controlfield tag="001">BV042420520</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200124 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461300175</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-0017-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461265078</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6507-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-0017-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869868617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420520</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abdallah, Naoufel Ben</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transport in Transition Regimes</subfield><subfield code="c">edited by Naoufel Ben Abdallah, Irene M. Gamba, Christian Ringhofer, Anton Arnold, Robert T. Glassey, Pierre Degond, C. David Levermore</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 301 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The IMA Volumes in Mathematics and its Applications</subfield><subfield code="v">135</subfield><subfield code="x">0940-6573</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wide range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical and Electronic Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical Continuum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gamba, Irene M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ringhofer, Christian</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arnold, Anton</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glassey, Robert</subfield><subfield code="d">1946-2020</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1203407009</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Degond, Pierre</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Levermore, C. David</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-0017-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855937</subfield></datafield></record></collection> |
id | DE-604.BV042420520 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461300175 9781461265078 |
issn | 0940-6573 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855937 |
oclc_num | 869868617 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 301 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer New York |
record_format | marc |
series2 | The IMA Volumes in Mathematics and its Applications |
spelling | Abdallah, Naoufel Ben Verfasser aut Transport in Transition Regimes edited by Naoufel Ben Abdallah, Irene M. Gamba, Christian Ringhofer, Anton Arnold, Robert T. Glassey, Pierre Degond, C. David Levermore New York, NY Springer New York 2004 1 Online-Ressource (X, 301 p) txt rdacontent c rdamedia cr rdacarrier The IMA Volumes in Mathematics and its Applications 135 0940-6573 IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wide range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc Mathematics Differential equations, partial Optical materials Applications of Mathematics Optical and Electronic Materials Partial Differential Equations Classical Continuum Physics Condensed Matter Physics Quantum Optics Mathematik Gamba, Irene M. Sonstige oth Ringhofer, Christian Sonstige oth Arnold, Anton Sonstige oth Glassey, Robert 1946-2020 Sonstige (DE-588)1203407009 oth Degond, Pierre Sonstige oth Levermore, C. David Sonstige oth https://doi.org/10.1007/978-1-4613-0017-5 Verlag Volltext |
spellingShingle | Abdallah, Naoufel Ben Transport in Transition Regimes Mathematics Differential equations, partial Optical materials Applications of Mathematics Optical and Electronic Materials Partial Differential Equations Classical Continuum Physics Condensed Matter Physics Quantum Optics Mathematik |
title | Transport in Transition Regimes |
title_auth | Transport in Transition Regimes |
title_exact_search | Transport in Transition Regimes |
title_full | Transport in Transition Regimes edited by Naoufel Ben Abdallah, Irene M. Gamba, Christian Ringhofer, Anton Arnold, Robert T. Glassey, Pierre Degond, C. David Levermore |
title_fullStr | Transport in Transition Regimes edited by Naoufel Ben Abdallah, Irene M. Gamba, Christian Ringhofer, Anton Arnold, Robert T. Glassey, Pierre Degond, C. David Levermore |
title_full_unstemmed | Transport in Transition Regimes edited by Naoufel Ben Abdallah, Irene M. Gamba, Christian Ringhofer, Anton Arnold, Robert T. Glassey, Pierre Degond, C. David Levermore |
title_short | Transport in Transition Regimes |
title_sort | transport in transition regimes |
topic | Mathematics Differential equations, partial Optical materials Applications of Mathematics Optical and Electronic Materials Partial Differential Equations Classical Continuum Physics Condensed Matter Physics Quantum Optics Mathematik |
topic_facet | Mathematics Differential equations, partial Optical materials Applications of Mathematics Optical and Electronic Materials Partial Differential Equations Classical Continuum Physics Condensed Matter Physics Quantum Optics Mathematik |
url | https://doi.org/10.1007/978-1-4613-0017-5 |
work_keys_str_mv | AT abdallahnaoufelben transportintransitionregimes AT gambairenem transportintransitionregimes AT ringhoferchristian transportintransitionregimes AT arnoldanton transportintransitionregimes AT glasseyrobert transportintransitionregimes AT degondpierre transportintransitionregimes AT levermorecdavid transportintransitionregimes |