Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1950
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | It has always been a temptation for mathematicians to present the crystallized product of their thoughts as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods of more general significance. The present book deals with subjects of this category. It is written in a style which, as the author hopes, expresses adequately the balance and tension between the individuality of mathematical objects and the generality of mathematical methods. The author has been interested in Dirichlet's Principle and its various applications since his days as a student under David Hilbert. Plans for writing a book on these topics were revived when Jesse Douglas' work suggested to him a close connection between Dirichlet's Principle and basic problems concerning minimal sur faces. But war work and other duties intervened; even now, after much delay, the book appears in a much less polished and complete form than the author would have liked |
Beschreibung: | 1 Online-Ressource (XI, 332p) |
ISBN: | 9781461299172 9781461299196 |
DOI: | 10.1007/978-1-4612-9917-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420500 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1950 |||| o||u| ||||||eng d | ||
020 | |a 9781461299172 |c Online |9 978-1-4612-9917-2 | ||
020 | |a 9781461299196 |c Print |9 978-1-4612-9919-6 | ||
024 | 7 | |a 10.1007/978-1-4612-9917-2 |2 doi | |
035 | |a (OCoLC)1165594443 | ||
035 | |a (DE-599)BVBBV042420500 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Courant, Richard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces |c by Richard Courant |
264 | 1 | |a New York, NY |b Springer New York |c 1950 | |
300 | |a 1 Online-Ressource (XI, 332p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a It has always been a temptation for mathematicians to present the crystallized product of their thoughts as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods of more general significance. The present book deals with subjects of this category. It is written in a style which, as the author hopes, expresses adequately the balance and tension between the individuality of mathematical objects and the generality of mathematical methods. The author has been interested in Dirichlet's Principle and its various applications since his days as a student under David Hilbert. Plans for writing a book on these topics were revived when Jesse Douglas' work suggested to him a close connection between Dirichlet's Principle and basic problems concerning minimal sur faces. But war work and other duties intervened; even now, after much delay, the book appears in a much less polished and complete form than the author would have liked | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Potenzialtheorie |0 (DE-588)4046939-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dirichletsches Prinzip |0 (DE-588)4150142-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dirichlet-Problem |0 (DE-588)4129762-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Minimalfläche |0 (DE-588)4127814-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konforme Abbildung |0 (DE-588)4164968-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dirichletsches Prinzip |0 (DE-588)4150142-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Konforme Abbildung |0 (DE-588)4164968-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Minimalfläche |0 (DE-588)4127814-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Dirichlet-Problem |0 (DE-588)4129762-3 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-9917-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855917 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092451598336 |
---|---|
any_adam_object | |
author | Courant, Richard |
author_facet | Courant, Richard |
author_role | aut |
author_sort | Courant, Richard |
author_variant | r c rc |
building | Verbundindex |
bvnumber | BV042420500 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165594443 (DE-599)BVBBV042420500 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-9917-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03696nmm a2200625zc 4500</leader><controlfield tag="001">BV042420500</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1950 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461299172</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-9917-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461299196</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-9919-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-9917-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165594443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420500</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Courant, Richard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces</subfield><subfield code="c">by Richard Courant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1950</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 332p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It has always been a temptation for mathematicians to present the crystallized product of their thoughts as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods of more general significance. The present book deals with subjects of this category. It is written in a style which, as the author hopes, expresses adequately the balance and tension between the individuality of mathematical objects and the generality of mathematical methods. The author has been interested in Dirichlet's Principle and its various applications since his days as a student under David Hilbert. Plans for writing a book on these topics were revived when Jesse Douglas' work suggested to him a close connection between Dirichlet's Principle and basic problems concerning minimal sur faces. But war work and other duties intervened; even now, after much delay, the book appears in a much less polished and complete form than the author would have liked</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dirichletsches Prinzip</subfield><subfield code="0">(DE-588)4150142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dirichlet-Problem</subfield><subfield code="0">(DE-588)4129762-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimalfläche</subfield><subfield code="0">(DE-588)4127814-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konforme Abbildung</subfield><subfield code="0">(DE-588)4164968-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dirichletsches Prinzip</subfield><subfield code="0">(DE-588)4150142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Konforme Abbildung</subfield><subfield code="0">(DE-588)4164968-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Minimalfläche</subfield><subfield code="0">(DE-588)4127814-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Dirichlet-Problem</subfield><subfield code="0">(DE-588)4129762-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-9917-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855917</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420500 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461299172 9781461299196 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855917 |
oclc_num | 1165594443 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 332p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1950 |
publishDateSearch | 1950 |
publishDateSort | 1950 |
publisher | Springer New York |
record_format | marc |
spelling | Courant, Richard Verfasser aut Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces by Richard Courant New York, NY Springer New York 1950 1 Online-Ressource (XI, 332p) txt rdacontent c rdamedia cr rdacarrier It has always been a temptation for mathematicians to present the crystallized product of their thoughts as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods of more general significance. The present book deals with subjects of this category. It is written in a style which, as the author hopes, expresses adequately the balance and tension between the individuality of mathematical objects and the generality of mathematical methods. The author has been interested in Dirichlet's Principle and its various applications since his days as a student under David Hilbert. Plans for writing a book on these topics were revived when Jesse Douglas' work suggested to him a close connection between Dirichlet's Principle and basic problems concerning minimal sur faces. But war work and other duties intervened; even now, after much delay, the book appears in a much less polished and complete form than the author would have liked Mathematics Mathematics, general Mathematik Potenzialtheorie (DE-588)4046939-6 gnd rswk-swf Dirichletsches Prinzip (DE-588)4150142-1 gnd rswk-swf Dirichlet-Problem (DE-588)4129762-3 gnd rswk-swf Minimalfläche (DE-588)4127814-8 gnd rswk-swf Konforme Abbildung (DE-588)4164968-0 gnd rswk-swf Dirichletsches Prinzip (DE-588)4150142-1 s 1\p DE-604 Konforme Abbildung (DE-588)4164968-0 s 2\p DE-604 Minimalfläche (DE-588)4127814-8 s 3\p DE-604 Potenzialtheorie (DE-588)4046939-6 s 4\p DE-604 Dirichlet-Problem (DE-588)4129762-3 s 5\p DE-604 https://doi.org/10.1007/978-1-4612-9917-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Courant, Richard Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces Mathematics Mathematics, general Mathematik Potenzialtheorie (DE-588)4046939-6 gnd Dirichletsches Prinzip (DE-588)4150142-1 gnd Dirichlet-Problem (DE-588)4129762-3 gnd Minimalfläche (DE-588)4127814-8 gnd Konforme Abbildung (DE-588)4164968-0 gnd |
subject_GND | (DE-588)4046939-6 (DE-588)4150142-1 (DE-588)4129762-3 (DE-588)4127814-8 (DE-588)4164968-0 |
title | Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces |
title_auth | Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces |
title_exact_search | Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces |
title_full | Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces by Richard Courant |
title_fullStr | Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces by Richard Courant |
title_full_unstemmed | Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces by Richard Courant |
title_short | Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces |
title_sort | dirichlet s principle conformal mapping and minimal surfaces |
topic | Mathematics Mathematics, general Mathematik Potenzialtheorie (DE-588)4046939-6 gnd Dirichletsches Prinzip (DE-588)4150142-1 gnd Dirichlet-Problem (DE-588)4129762-3 gnd Minimalfläche (DE-588)4127814-8 gnd Konforme Abbildung (DE-588)4164968-0 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Potenzialtheorie Dirichletsches Prinzip Dirichlet-Problem Minimalfläche Konforme Abbildung |
url | https://doi.org/10.1007/978-1-4612-9917-2 |
work_keys_str_mv | AT courantrichard dirichletsprincipleconformalmappingandminimalsurfaces |