Spectral Theory of Operators in Hilbert Space:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1973
|
Schriftenreihe: | Applied Mathematical Sciences
9 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The present lectures intend to provide an introduction to the spectral analysis of self-adjoint operators within the framework of Hilbert space theory. The guiding notion in this approach is that of spectral representation. At the same time the notion of function of an operator is emphasized. The formal aspects of these concepts are explained in the first two chapters. Only then is the notion of Hilbert space introduced. The following three chapters concern bounded, completely continuous, and non-bounded operators. Next, simple differential operators are treated as operators in Hilbert space, and the final chapter deals with the perturbation of discrete and continuous spectra. The preparation of the original version of these lecture notes was greatly helped by the assistance of P. Rejto. Various valuable suggestions made by him and by R. Lewis have been incorporated. The present version of the notes contains extensive modifications, in particular in the chapters on bounded and unbounded operators. February, 1973 K.O.F. PREFACE TO THE SECOND PRINTING The second printing (1980) is a basically unchanged reprint in which a number of minor errors were corrected. The author wishes to thank Klaus Schmidt (Lausanne) and John Sylvester (New York) for their lists of errors. v TABLE OF CONTENTS I. Spectral Representation 1 1. Three typical problems 1 12 2. Linear space and functional representation |
Beschreibung: | 1 Online-Ressource (IX, 245 p) |
ISBN: | 9781461263968 9780387900766 |
DOI: | 10.1007/978-1-4612-6396-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420481 | ||
003 | DE-604 | ||
005 | 20210719 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1973 |||| o||u| ||||||eng d | ||
020 | |a 9781461263968 |c Online |9 978-1-4612-6396-8 | ||
020 | |a 9780387900766 |c Print |9 978-0-387-90076-6 | ||
024 | 7 | |a 10.1007/978-1-4612-6396-8 |2 doi | |
035 | |a (OCoLC)863782138 | ||
035 | |a (DE-599)BVBBV042420481 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Friedrichs, Kurt O. |d 1901-1982 |e Verfasser |0 (DE-588)118820265 |4 aut | |
245 | 1 | 0 | |a Spectral Theory of Operators in Hilbert Space |c by K. O. Friedrichs |
264 | 1 | |a New York, NY |b Springer New York |c 1973 | |
300 | |a 1 Online-Ressource (IX, 245 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Mathematical Sciences |v 9 | |
500 | |a The present lectures intend to provide an introduction to the spectral analysis of self-adjoint operators within the framework of Hilbert space theory. The guiding notion in this approach is that of spectral representation. At the same time the notion of function of an operator is emphasized. The formal aspects of these concepts are explained in the first two chapters. Only then is the notion of Hilbert space introduced. The following three chapters concern bounded, completely continuous, and non-bounded operators. Next, simple differential operators are treated as operators in Hilbert space, and the final chapter deals with the perturbation of discrete and continuous spectra. The preparation of the original version of these lecture notes was greatly helped by the assistance of P. Rejto. Various valuable suggestions made by him and by R. Lewis have been incorporated. The present version of the notes contains extensive modifications, in particular in the chapters on bounded and unbounded operators. February, 1973 K.O.F. PREFACE TO THE SECOND PRINTING The second printing (1980) is a basically unchanged reprint in which a number of minor errors were corrected. The author wishes to thank Klaus Schmidt (Lausanne) and John Sylvester (New York) for their lists of errors. v TABLE OF CONTENTS I. Spectral Representation 1 1. Three typical problems 1 12 2. Linear space and functional representation | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operator |0 (DE-588)4130529-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | 1 | |a Operator |0 (DE-588)4130529-2 |D s |
689 | 0 | 2 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 1 | 1 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 1 | 2 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Applied Mathematical Sciences |v 9 |w (DE-604)BV040244599 |9 9 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-6396-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855898 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092419092480 |
---|---|
any_adam_object | |
author | Friedrichs, Kurt O. 1901-1982 |
author_GND | (DE-588)118820265 |
author_facet | Friedrichs, Kurt O. 1901-1982 |
author_role | aut |
author_sort | Friedrichs, Kurt O. 1901-1982 |
author_variant | k o f ko kof |
building | Verbundindex |
bvnumber | BV042420481 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863782138 (DE-599)BVBBV042420481 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-6396-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03555nmm a2200577zcb4500</leader><controlfield tag="001">BV042420481</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210719 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1973 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461263968</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-6396-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387900766</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90076-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-6396-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863782138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420481</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Friedrichs, Kurt O.</subfield><subfield code="d">1901-1982</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118820265</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral Theory of Operators in Hilbert Space</subfield><subfield code="c">by K. O. Friedrichs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 245 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">9</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The present lectures intend to provide an introduction to the spectral analysis of self-adjoint operators within the framework of Hilbert space theory. The guiding notion in this approach is that of spectral representation. At the same time the notion of function of an operator is emphasized. The formal aspects of these concepts are explained in the first two chapters. Only then is the notion of Hilbert space introduced. The following three chapters concern bounded, completely continuous, and non-bounded operators. Next, simple differential operators are treated as operators in Hilbert space, and the final chapter deals with the perturbation of discrete and continuous spectra. The preparation of the original version of these lecture notes was greatly helped by the assistance of P. Rejto. Various valuable suggestions made by him and by R. Lewis have been incorporated. The present version of the notes contains extensive modifications, in particular in the chapters on bounded and unbounded operators. February, 1973 K.O.F. PREFACE TO THE SECOND PRINTING The second printing (1980) is a basically unchanged reprint in which a number of minor errors were corrected. The author wishes to thank Klaus Schmidt (Lausanne) and John Sylvester (New York) for their lists of errors. v TABLE OF CONTENTS I. Spectral Representation 1 1. Three typical problems 1 12 2. Linear space and functional representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">9</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-6396-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855898</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420481 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461263968 9780387900766 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855898 |
oclc_num | 863782138 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 245 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Springer New York |
record_format | marc |
series | Applied Mathematical Sciences |
series2 | Applied Mathematical Sciences |
spelling | Friedrichs, Kurt O. 1901-1982 Verfasser (DE-588)118820265 aut Spectral Theory of Operators in Hilbert Space by K. O. Friedrichs New York, NY Springer New York 1973 1 Online-Ressource (IX, 245 p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 9 The present lectures intend to provide an introduction to the spectral analysis of self-adjoint operators within the framework of Hilbert space theory. The guiding notion in this approach is that of spectral representation. At the same time the notion of function of an operator is emphasized. The formal aspects of these concepts are explained in the first two chapters. Only then is the notion of Hilbert space introduced. The following three chapters concern bounded, completely continuous, and non-bounded operators. Next, simple differential operators are treated as operators in Hilbert space, and the final chapter deals with the perturbation of discrete and continuous spectra. The preparation of the original version of these lecture notes was greatly helped by the assistance of P. Rejto. Various valuable suggestions made by him and by R. Lewis have been incorporated. The present version of the notes contains extensive modifications, in particular in the chapters on bounded and unbounded operators. February, 1973 K.O.F. PREFACE TO THE SECOND PRINTING The second printing (1980) is a basically unchanged reprint in which a number of minor errors were corrected. The author wishes to thank Klaus Schmidt (Lausanne) and John Sylvester (New York) for their lists of errors. v TABLE OF CONTENTS I. Spectral Representation 1 1. Three typical problems 1 12 2. Linear space and functional representation Mathematics Mathematics, general Mathematik Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Operator (DE-588)4130529-2 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Operatortheorie (DE-588)4075665-8 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 s Operator (DE-588)4130529-2 s Spektraltheorie (DE-588)4116561-5 s 1\p DE-604 Operatortheorie (DE-588)4075665-8 s 2\p DE-604 Applied Mathematical Sciences 9 (DE-604)BV040244599 9 https://doi.org/10.1007/978-1-4612-6396-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Friedrichs, Kurt O. 1901-1982 Spectral Theory of Operators in Hilbert Space Applied Mathematical Sciences Mathematics Mathematics, general Mathematik Hilbert-Raum (DE-588)4159850-7 gnd Operator (DE-588)4130529-2 gnd Spektraltheorie (DE-588)4116561-5 gnd Operatortheorie (DE-588)4075665-8 gnd |
subject_GND | (DE-588)4159850-7 (DE-588)4130529-2 (DE-588)4116561-5 (DE-588)4075665-8 |
title | Spectral Theory of Operators in Hilbert Space |
title_auth | Spectral Theory of Operators in Hilbert Space |
title_exact_search | Spectral Theory of Operators in Hilbert Space |
title_full | Spectral Theory of Operators in Hilbert Space by K. O. Friedrichs |
title_fullStr | Spectral Theory of Operators in Hilbert Space by K. O. Friedrichs |
title_full_unstemmed | Spectral Theory of Operators in Hilbert Space by K. O. Friedrichs |
title_short | Spectral Theory of Operators in Hilbert Space |
title_sort | spectral theory of operators in hilbert space |
topic | Mathematics Mathematics, general Mathematik Hilbert-Raum (DE-588)4159850-7 gnd Operator (DE-588)4130529-2 gnd Spektraltheorie (DE-588)4116561-5 gnd Operatortheorie (DE-588)4075665-8 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Hilbert-Raum Operator Spektraltheorie Operatortheorie |
url | https://doi.org/10.1007/978-1-4612-6396-8 |
volume_link | (DE-604)BV040244599 |
work_keys_str_mv | AT friedrichskurto spectraltheoryofoperatorsinhilbertspace |