Sturmian Theory for Ordinary Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1980
|
Schriftenreihe: | Applied Mathematical Sciences
31 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A major portion of the study of the qualitative nature of solutions of differential equations may be traced to the famous 1836 paper of Sturm [1], (here, as elsewhere throughout this manuscript, numbers in square brackets refer to the bibliography at the end of this volume), dealing with oscillation and comparison theorems for linear homogeneous second order ordinary differential equations. The associated work of Liouville introduced a type of boundary problem known as a "Sturm-Liouville problem", involving, in particular, an introduction to the study of the asymptotic behavior of solutions of linear second order differential equations by the use of integral equations. In the quarter century following the 1891 Göttingen dissertation [1] of Maxime Bacher (1867-1918), he was instrumental in the elaboration and extension of the oscillation, separation, and comparison theorems of Sturm, both in his many papers on the subject and his lectures at the Sorbonne in 1913-1914, which were subsequently published as his famous Leaons sur Zes methodes de Sturm [7] |
Beschreibung: | 1 Online-Ressource (584p) |
ISBN: | 9781461261100 9780387905426 |
DOI: | 10.1007/978-1-4612-6110-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420453 | ||
003 | DE-604 | ||
005 | 20200707 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1980 |||| o||u| ||||||eng d | ||
020 | |a 9781461261100 |c Online |9 978-1-4612-6110-0 | ||
020 | |a 9780387905426 |c Print |9 978-0-387-90542-6 | ||
024 | 7 | |a 10.1007/978-1-4612-6110-0 |2 doi | |
035 | |a (OCoLC)863767991 | ||
035 | |a (DE-599)BVBBV042420453 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Reid, William T. |d 1907-1977 |e Verfasser |0 (DE-588)172328209 |4 aut | |
245 | 1 | 0 | |a Sturmian Theory for Ordinary Differential Equations |c by William T. Reid |
264 | 1 | |a New York, NY |b Springer New York |c 1980 | |
300 | |a 1 Online-Ressource (584p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Mathematical Sciences |v 31 | |
500 | |a A major portion of the study of the qualitative nature of solutions of differential equations may be traced to the famous 1836 paper of Sturm [1], (here, as elsewhere throughout this manuscript, numbers in square brackets refer to the bibliography at the end of this volume), dealing with oscillation and comparison theorems for linear homogeneous second order ordinary differential equations. The associated work of Liouville introduced a type of boundary problem known as a "Sturm-Liouville problem", involving, in particular, an introduction to the study of the asymptotic behavior of solutions of linear second order differential equations by the use of integral equations. In the quarter century following the 1891 Göttingen dissertation [1] of Maxime Bacher (1867-1918), he was instrumental in the elaboration and extension of the oscillation, separation, and comparison theorems of Sturm, both in his many papers on the subject and his lectures at the Sorbonne in 1913-1914, which were subsequently published as his famous Leaons sur Zes methodes de Sturm [7] | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare gewöhnliche Differentialgleichung |0 (DE-588)4353441-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sturm-Liouville-Differenzengleichung |0 (DE-588)4202274-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 0 | 1 | |a Sturm-Liouville-Differenzengleichung |0 (DE-588)4202274-5 |D s |
689 | 0 | 2 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lineare gewöhnliche Differentialgleichung |0 (DE-588)4353441-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Applied Mathematical Sciences |v 31 |w (DE-604)BV040244599 |9 31 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-6110-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855870 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092382392320 |
---|---|
any_adam_object | |
author | Reid, William T. 1907-1977 |
author_GND | (DE-588)172328209 |
author_facet | Reid, William T. 1907-1977 |
author_role | aut |
author_sort | Reid, William T. 1907-1977 |
author_variant | w t r wt wtr |
building | Verbundindex |
bvnumber | BV042420453 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863767991 (DE-599)BVBBV042420453 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-6110-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03295nmm a2200565zcb4500</leader><controlfield tag="001">BV042420453</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200707 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461261100</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-6110-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387905426</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90542-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-6110-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863767991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420453</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reid, William T.</subfield><subfield code="d">1907-1977</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172328209</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sturmian Theory for Ordinary Differential Equations</subfield><subfield code="c">by William T. Reid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (584p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">31</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A major portion of the study of the qualitative nature of solutions of differential equations may be traced to the famous 1836 paper of Sturm [1], (here, as elsewhere throughout this manuscript, numbers in square brackets refer to the bibliography at the end of this volume), dealing with oscillation and comparison theorems for linear homogeneous second order ordinary differential equations. The associated work of Liouville introduced a type of boundary problem known as a "Sturm-Liouville problem", involving, in particular, an introduction to the study of the asymptotic behavior of solutions of linear second order differential equations by the use of integral equations. In the quarter century following the 1891 Göttingen dissertation [1] of Maxime Bacher (1867-1918), he was instrumental in the elaboration and extension of the oscillation, separation, and comparison theorems of Sturm, both in his many papers on the subject and his lectures at the Sorbonne in 1913-1914, which were subsequently published as his famous Leaons sur Zes methodes de Sturm [7]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4353441-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sturm-Liouville-Differenzengleichung</subfield><subfield code="0">(DE-588)4202274-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sturm-Liouville-Differenzengleichung</subfield><subfield code="0">(DE-588)4202274-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4353441-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">31</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">31</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-6110-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855870</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420453 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461261100 9780387905426 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855870 |
oclc_num | 863767991 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (584p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Springer New York |
record_format | marc |
series | Applied Mathematical Sciences |
series2 | Applied Mathematical Sciences |
spelling | Reid, William T. 1907-1977 Verfasser (DE-588)172328209 aut Sturmian Theory for Ordinary Differential Equations by William T. Reid New York, NY Springer New York 1980 1 Online-Ressource (584p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 31 A major portion of the study of the qualitative nature of solutions of differential equations may be traced to the famous 1836 paper of Sturm [1], (here, as elsewhere throughout this manuscript, numbers in square brackets refer to the bibliography at the end of this volume), dealing with oscillation and comparison theorems for linear homogeneous second order ordinary differential equations. The associated work of Liouville introduced a type of boundary problem known as a "Sturm-Liouville problem", involving, in particular, an introduction to the study of the asymptotic behavior of solutions of linear second order differential equations by the use of integral equations. In the quarter century following the 1891 Göttingen dissertation [1] of Maxime Bacher (1867-1918), he was instrumental in the elaboration and extension of the oscillation, separation, and comparison theorems of Sturm, both in his many papers on the subject and his lectures at the Sorbonne in 1913-1914, which were subsequently published as his famous Leaons sur Zes methodes de Sturm [7] Mathematics Global analysis (Mathematics) Analysis Mathematik Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Lineare gewöhnliche Differentialgleichung (DE-588)4353441-7 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Sturm-Liouville-Differenzengleichung (DE-588)4202274-5 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 s Sturm-Liouville-Differenzengleichung (DE-588)4202274-5 s Randwertproblem (DE-588)4048395-2 s 1\p DE-604 Lineare gewöhnliche Differentialgleichung (DE-588)4353441-7 s 2\p DE-604 Applied Mathematical Sciences 31 (DE-604)BV040244599 31 https://doi.org/10.1007/978-1-4612-6110-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Reid, William T. 1907-1977 Sturmian Theory for Ordinary Differential Equations Applied Mathematical Sciences Mathematics Global analysis (Mathematics) Analysis Mathematik Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Lineare gewöhnliche Differentialgleichung (DE-588)4353441-7 gnd Randwertproblem (DE-588)4048395-2 gnd Sturm-Liouville-Differenzengleichung (DE-588)4202274-5 gnd |
subject_GND | (DE-588)4020929-5 (DE-588)4353441-7 (DE-588)4048395-2 (DE-588)4202274-5 |
title | Sturmian Theory for Ordinary Differential Equations |
title_auth | Sturmian Theory for Ordinary Differential Equations |
title_exact_search | Sturmian Theory for Ordinary Differential Equations |
title_full | Sturmian Theory for Ordinary Differential Equations by William T. Reid |
title_fullStr | Sturmian Theory for Ordinary Differential Equations by William T. Reid |
title_full_unstemmed | Sturmian Theory for Ordinary Differential Equations by William T. Reid |
title_short | Sturmian Theory for Ordinary Differential Equations |
title_sort | sturmian theory for ordinary differential equations |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Lineare gewöhnliche Differentialgleichung (DE-588)4353441-7 gnd Randwertproblem (DE-588)4048395-2 gnd Sturm-Liouville-Differenzengleichung (DE-588)4202274-5 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Gewöhnliche Differentialgleichung Lineare gewöhnliche Differentialgleichung Randwertproblem Sturm-Liouville-Differenzengleichung |
url | https://doi.org/10.1007/978-1-4612-6110-0 |
volume_link | (DE-604)BV040244599 |
work_keys_str_mv | AT reidwilliamt sturmiantheoryforordinarydifferentialequations |