Conjugate Direction Methods in Optimization:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1980
|
Schriftenreihe: | Applications of Mathematics
12 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Shortly after the end of World War II high-speed digital computing machines were being developed. It was clear that the mathematical aspects of com putation needed to be reexamined in order to make efficient use of high-speed digital computers for mathematical computations. Accordingly, under the leadership of Min a Rees, John Curtiss, and others, an Institute for Numerical Analysis was set up at the University of California at Los Angeles under the sponsorship of the National Bureau of Standards. A similar institute was formed at the National Bureau of Standards in Washington, D. C. In 1949 J. Barkeley Rosser became Director of the group at UCLA for a period of two years. During this period we organized a seminar on the study of solutions of simultaneous linear equations and on the determination of eigenvalues. G. Forsythe, W. Karush, C. Lanczos, T. Motzkin, L. J. Paige, and others attended this seminar. We discovered, for example, that even Gaussian elimination was not well understood from a machine point of view and that no effective machine oriented elimination algorithm had been developed. During this period Lanczos developed his three-term relationship and I had the good fortune of suggesting the method of conjugate gradients. We discovered afterward that the basic ideas underlying the two procedures are essentially the same. The concept of conjugacy was not new to me. In a joint paper with G. D. |
Beschreibung: | 1 Online-Ressource (X, 325 p) |
ISBN: | 9781461260486 9781461260509 |
ISSN: | 0172-4568 |
DOI: | 10.1007/978-1-4612-6048-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420448 | ||
003 | DE-604 | ||
005 | 20180108 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1980 |||| o||u| ||||||eng d | ||
020 | |a 9781461260486 |c Online |9 978-1-4612-6048-6 | ||
020 | |a 9781461260509 |c Print |9 978-1-4612-6050-9 | ||
024 | 7 | |a 10.1007/978-1-4612-6048-6 |2 doi | |
035 | |a (OCoLC)863788841 | ||
035 | |a (DE-599)BVBBV042420448 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hestenes, Magnus Rudolph |e Verfasser |4 aut | |
245 | 1 | 0 | |a Conjugate Direction Methods in Optimization |c by Magnus Rudolph Hestenes |
264 | 1 | |a New York, NY |b Springer New York |c 1980 | |
300 | |a 1 Online-Ressource (X, 325 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applications of Mathematics |v 12 |x 0172-4568 | |
500 | |a Shortly after the end of World War II high-speed digital computing machines were being developed. It was clear that the mathematical aspects of com putation needed to be reexamined in order to make efficient use of high-speed digital computers for mathematical computations. Accordingly, under the leadership of Min a Rees, John Curtiss, and others, an Institute for Numerical Analysis was set up at the University of California at Los Angeles under the sponsorship of the National Bureau of Standards. A similar institute was formed at the National Bureau of Standards in Washington, D. C. In 1949 J. Barkeley Rosser became Director of the group at UCLA for a period of two years. During this period we organized a seminar on the study of solutions of simultaneous linear equations and on the determination of eigenvalues. G. Forsythe, W. Karush, C. Lanczos, T. Motzkin, L. J. Paige, and others attended this seminar. We discovered, for example, that even Gaussian elimination was not well understood from a machine point of view and that no effective machine oriented elimination algorithm had been developed. During this period Lanczos developed his three-term relationship and I had the good fortune of suggesting the method of conjugate gradients. We discovered afterward that the basic ideas underlying the two procedures are essentially the same. The concept of conjugacy was not new to me. In a joint paper with G. D. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gradientenverfahren |0 (DE-588)4157995-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quasi-Newton-Verfahren |0 (DE-588)4479204-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quasi-Newton-Verfahren |0 (DE-588)4479204-9 |D s |
689 | 0 | 1 | |a Gradientenverfahren |0 (DE-588)4157995-1 |D s |
689 | 0 | 2 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Applications of Mathematics |v 12 |w (DE-604)BV000895226 |9 12 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-6048-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855865 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092369809408 |
---|---|
any_adam_object | |
author | Hestenes, Magnus Rudolph |
author_facet | Hestenes, Magnus Rudolph |
author_role | aut |
author_sort | Hestenes, Magnus Rudolph |
author_variant | m r h mr mrh |
building | Verbundindex |
bvnumber | BV042420448 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863788841 (DE-599)BVBBV042420448 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-6048-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03405nmm a2200541zcb4500</leader><controlfield tag="001">BV042420448</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461260486</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-6048-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461260509</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6050-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-6048-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863788841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420448</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hestenes, Magnus Rudolph</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conjugate Direction Methods in Optimization</subfield><subfield code="c">by Magnus Rudolph Hestenes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 325 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applications of Mathematics</subfield><subfield code="v">12</subfield><subfield code="x">0172-4568</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Shortly after the end of World War II high-speed digital computing machines were being developed. It was clear that the mathematical aspects of com putation needed to be reexamined in order to make efficient use of high-speed digital computers for mathematical computations. Accordingly, under the leadership of Min a Rees, John Curtiss, and others, an Institute for Numerical Analysis was set up at the University of California at Los Angeles under the sponsorship of the National Bureau of Standards. A similar institute was formed at the National Bureau of Standards in Washington, D. C. In 1949 J. Barkeley Rosser became Director of the group at UCLA for a period of two years. During this period we organized a seminar on the study of solutions of simultaneous linear equations and on the determination of eigenvalues. G. Forsythe, W. Karush, C. Lanczos, T. Motzkin, L. J. Paige, and others attended this seminar. We discovered, for example, that even Gaussian elimination was not well understood from a machine point of view and that no effective machine oriented elimination algorithm had been developed. During this period Lanczos developed his three-term relationship and I had the good fortune of suggesting the method of conjugate gradients. We discovered afterward that the basic ideas underlying the two procedures are essentially the same. The concept of conjugacy was not new to me. In a joint paper with G. D.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gradientenverfahren</subfield><subfield code="0">(DE-588)4157995-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasi-Newton-Verfahren</subfield><subfield code="0">(DE-588)4479204-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quasi-Newton-Verfahren</subfield><subfield code="0">(DE-588)4479204-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gradientenverfahren</subfield><subfield code="0">(DE-588)4157995-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applications of Mathematics</subfield><subfield code="v">12</subfield><subfield code="w">(DE-604)BV000895226</subfield><subfield code="9">12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-6048-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855865</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420448 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461260486 9781461260509 |
issn | 0172-4568 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855865 |
oclc_num | 863788841 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 325 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Springer New York |
record_format | marc |
series | Applications of Mathematics |
series2 | Applications of Mathematics |
spelling | Hestenes, Magnus Rudolph Verfasser aut Conjugate Direction Methods in Optimization by Magnus Rudolph Hestenes New York, NY Springer New York 1980 1 Online-Ressource (X, 325 p) txt rdacontent c rdamedia cr rdacarrier Applications of Mathematics 12 0172-4568 Shortly after the end of World War II high-speed digital computing machines were being developed. It was clear that the mathematical aspects of com putation needed to be reexamined in order to make efficient use of high-speed digital computers for mathematical computations. Accordingly, under the leadership of Min a Rees, John Curtiss, and others, an Institute for Numerical Analysis was set up at the University of California at Los Angeles under the sponsorship of the National Bureau of Standards. A similar institute was formed at the National Bureau of Standards in Washington, D. C. In 1949 J. Barkeley Rosser became Director of the group at UCLA for a period of two years. During this period we organized a seminar on the study of solutions of simultaneous linear equations and on the determination of eigenvalues. G. Forsythe, W. Karush, C. Lanczos, T. Motzkin, L. J. Paige, and others attended this seminar. We discovered, for example, that even Gaussian elimination was not well understood from a machine point of view and that no effective machine oriented elimination algorithm had been developed. During this period Lanczos developed his three-term relationship and I had the good fortune of suggesting the method of conjugate gradients. We discovered afterward that the basic ideas underlying the two procedures are essentially the same. The concept of conjugacy was not new to me. In a joint paper with G. D. Mathematics Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Mathematik Optimierung (DE-588)4043664-0 gnd rswk-swf Gradientenverfahren (DE-588)4157995-1 gnd rswk-swf Quasi-Newton-Verfahren (DE-588)4479204-9 gnd rswk-swf Quasi-Newton-Verfahren (DE-588)4479204-9 s Gradientenverfahren (DE-588)4157995-1 s Optimierung (DE-588)4043664-0 s 1\p DE-604 Applications of Mathematics 12 (DE-604)BV000895226 12 https://doi.org/10.1007/978-1-4612-6048-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hestenes, Magnus Rudolph Conjugate Direction Methods in Optimization Applications of Mathematics Mathematics Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Mathematik Optimierung (DE-588)4043664-0 gnd Gradientenverfahren (DE-588)4157995-1 gnd Quasi-Newton-Verfahren (DE-588)4479204-9 gnd |
subject_GND | (DE-588)4043664-0 (DE-588)4157995-1 (DE-588)4479204-9 |
title | Conjugate Direction Methods in Optimization |
title_auth | Conjugate Direction Methods in Optimization |
title_exact_search | Conjugate Direction Methods in Optimization |
title_full | Conjugate Direction Methods in Optimization by Magnus Rudolph Hestenes |
title_fullStr | Conjugate Direction Methods in Optimization by Magnus Rudolph Hestenes |
title_full_unstemmed | Conjugate Direction Methods in Optimization by Magnus Rudolph Hestenes |
title_short | Conjugate Direction Methods in Optimization |
title_sort | conjugate direction methods in optimization |
topic | Mathematics Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Mathematik Optimierung (DE-588)4043664-0 gnd Gradientenverfahren (DE-588)4157995-1 gnd Quasi-Newton-Verfahren (DE-588)4479204-9 gnd |
topic_facet | Mathematics Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Mathematik Optimierung Gradientenverfahren Quasi-Newton-Verfahren |
url | https://doi.org/10.1007/978-1-4612-6048-6 |
volume_link | (DE-604)BV000895226 |
work_keys_str_mv | AT hestenesmagnusrudolph conjugatedirectionmethodsinoptimization |