Linear Operators in Hilbert Spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1980
|
Schriftenreihe: | Graduate Texts in Mathematics
68 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This English edition is almost identical to the German original Lineare Operatoren in Hilberträumen, published by B. G. Teubner, Stuttgart in 1976. A few proofs have been simplified, some additional exercises have been included, and a small number of new results has been added (e.g., Theorem 11.11 and Theorem 11.23). In addition a great number of minor errors has been corrected. Frankfurt, January 1980 J. Weidmann vii Preface to the German edition The purpose of this book is to give an introduction to the theory of linear operators on Hilbert spaces and then to proceed to the interesting applications of differential operators to mathematical physics. Besides the usual introductory courses common to both mathematicians and physicists, only a fundamental knowledge of complex analysis and of ordinary differential equations is assumed. The most important results of Lebesgue integration theory, to the extent that they are used in this book, are compiled with complete proofs in Appendix A. I hope therefore that students from the fourth semester on will be able to read this book without major difficulty. However, it might also be of some interest and use to the teaching and research mathematician or physicist, since among other things it makes easily accessible several new results of the spectral theory of differential operators |
Beschreibung: | 1 Online-Ressource (XIV, 402 p) |
ISBN: | 9781461260271 9781461260295 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4612-6027-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420446 | ||
003 | DE-604 | ||
005 | 20210216 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1980 |||| o||u| ||||||eng d | ||
020 | |a 9781461260271 |c Online |9 978-1-4612-6027-1 | ||
020 | |a 9781461260295 |c Print |9 978-1-4612-6029-5 | ||
024 | 7 | |a 10.1007/978-1-4612-6027-1 |2 doi | |
035 | |a (OCoLC)863920834 | ||
035 | |a (DE-599)BVBBV042420446 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Weidmann, Joachim |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear Operators in Hilbert Spaces |c by Joachim Weidmann |
264 | 1 | |a New York, NY |b Springer US |c 1980 | |
300 | |a 1 Online-Ressource (XIV, 402 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Graduate Texts in Mathematics |v 68 |x 0072-5285 | |
500 | |a This English edition is almost identical to the German original Lineare Operatoren in Hilberträumen, published by B. G. Teubner, Stuttgart in 1976. A few proofs have been simplified, some additional exercises have been included, and a small number of new results has been added (e.g., Theorem 11.11 and Theorem 11.23). In addition a great number of minor errors has been corrected. Frankfurt, January 1980 J. Weidmann vii Preface to the German edition The purpose of this book is to give an introduction to the theory of linear operators on Hilbert spaces and then to proceed to the interesting applications of differential operators to mathematical physics. Besides the usual introductory courses common to both mathematicians and physicists, only a fundamental knowledge of complex analysis and of ordinary differential equations is assumed. The most important results of Lebesgue integration theory, to the extent that they are used in this book, are compiled with complete proofs in Appendix A. I hope therefore that students from the fourth semester on will be able to read this book without major difficulty. However, it might also be of some interest and use to the teaching and research mathematician or physicist, since among other things it makes easily accessible several new results of the spectral theory of differential operators | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Linearer Operator |0 (DE-588)4167721-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 0 | 1 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
830 | 0 | |a Graduate Texts in Mathematics |v 68 |w (DE-604)BV035421258 |9 68 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-6027-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855863 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092356177920 |
---|---|
any_adam_object | |
author | Weidmann, Joachim |
author_facet | Weidmann, Joachim |
author_role | aut |
author_sort | Weidmann, Joachim |
author_variant | j w jw |
building | Verbundindex |
bvnumber | BV042420446 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863920834 (DE-599)BVBBV042420446 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-6027-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03196nmm a2200517zcb4500</leader><controlfield tag="001">BV042420446</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461260271</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-6027-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461260295</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6029-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-6027-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863920834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weidmann, Joachim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Operators in Hilbert Spaces</subfield><subfield code="c">by Joachim Weidmann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 402 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">68</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This English edition is almost identical to the German original Lineare Operatoren in Hilberträumen, published by B. G. Teubner, Stuttgart in 1976. A few proofs have been simplified, some additional exercises have been included, and a small number of new results has been added (e.g., Theorem 11.11 and Theorem 11.23). In addition a great number of minor errors has been corrected. Frankfurt, January 1980 J. Weidmann vii Preface to the German edition The purpose of this book is to give an introduction to the theory of linear operators on Hilbert spaces and then to proceed to the interesting applications of differential operators to mathematical physics. Besides the usual introductory courses common to both mathematicians and physicists, only a fundamental knowledge of complex analysis and of ordinary differential equations is assumed. The most important results of Lebesgue integration theory, to the extent that they are used in this book, are compiled with complete proofs in Appendix A. I hope therefore that students from the fourth semester on will be able to read this book without major difficulty. However, it might also be of some interest and use to the teaching and research mathematician or physicist, since among other things it makes easily accessible several new results of the spectral theory of differential operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">68</subfield><subfield code="w">(DE-604)BV035421258</subfield><subfield code="9">68</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-6027-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855863</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042420446 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461260271 9781461260295 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855863 |
oclc_num | 863920834 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 402 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Springer US |
record_format | marc |
series | Graduate Texts in Mathematics |
series2 | Graduate Texts in Mathematics |
spelling | Weidmann, Joachim Verfasser aut Linear Operators in Hilbert Spaces by Joachim Weidmann New York, NY Springer US 1980 1 Online-Ressource (XIV, 402 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 68 0072-5285 This English edition is almost identical to the German original Lineare Operatoren in Hilberträumen, published by B. G. Teubner, Stuttgart in 1976. A few proofs have been simplified, some additional exercises have been included, and a small number of new results has been added (e.g., Theorem 11.11 and Theorem 11.23). In addition a great number of minor errors has been corrected. Frankfurt, January 1980 J. Weidmann vii Preface to the German edition The purpose of this book is to give an introduction to the theory of linear operators on Hilbert spaces and then to proceed to the interesting applications of differential operators to mathematical physics. Besides the usual introductory courses common to both mathematicians and physicists, only a fundamental knowledge of complex analysis and of ordinary differential equations is assumed. The most important results of Lebesgue integration theory, to the extent that they are used in this book, are compiled with complete proofs in Appendix A. I hope therefore that students from the fourth semester on will be able to read this book without major difficulty. However, it might also be of some interest and use to the teaching and research mathematician or physicist, since among other things it makes easily accessible several new results of the spectral theory of differential operators Mathematics Global analysis (Mathematics) Analysis Mathematik Linearer Operator (DE-588)4167721-3 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Linearer Operator (DE-588)4167721-3 s Hilbert-Raum (DE-588)4159850-7 s 2\p DE-604 Graduate Texts in Mathematics 68 (DE-604)BV035421258 68 https://doi.org/10.1007/978-1-4612-6027-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Weidmann, Joachim Linear Operators in Hilbert Spaces Graduate Texts in Mathematics Mathematics Global analysis (Mathematics) Analysis Mathematik Linearer Operator (DE-588)4167721-3 gnd Hilbert-Raum (DE-588)4159850-7 gnd |
subject_GND | (DE-588)4167721-3 (DE-588)4159850-7 (DE-588)4123623-3 |
title | Linear Operators in Hilbert Spaces |
title_auth | Linear Operators in Hilbert Spaces |
title_exact_search | Linear Operators in Hilbert Spaces |
title_full | Linear Operators in Hilbert Spaces by Joachim Weidmann |
title_fullStr | Linear Operators in Hilbert Spaces by Joachim Weidmann |
title_full_unstemmed | Linear Operators in Hilbert Spaces by Joachim Weidmann |
title_short | Linear Operators in Hilbert Spaces |
title_sort | linear operators in hilbert spaces |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Linearer Operator (DE-588)4167721-3 gnd Hilbert-Raum (DE-588)4159850-7 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Linearer Operator Hilbert-Raum Lehrbuch |
url | https://doi.org/10.1007/978-1-4612-6027-1 |
volume_link | (DE-604)BV035421258 |
work_keys_str_mv | AT weidmannjoachim linearoperatorsinhilbertspaces |