Transformation Geometry: An Introduction to Symmetry
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1982
|
Schriftenreihe: | Undergraduate Texts in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Transformation geometry is a relatively recent expression of the successful venture of bringing together geometry and algebra. The name describes an approach as much as the content. Our subject is Euclidean geometry. Essential to the study of the plane or any mathematical system is an under standing of the transformations on that system that preserve designated features of the system. Our study of the automorphisms of the plane and of space is based on only the most elementary high-school geometry. In particular, group theory is not a prerequisite here. On the contrary, this modern approach to Euclidean geometry gives the concrete examples that are necessary to appreciate an introduction to group theory. Therefore, a course based on this text is an excellent prerequisite to the standard course in abstract algebra taken by every undergraduate mathematics major. An advantage of having nb college mathematics prerequisite to our study is that the text is then useful for graduate mathematics courses designed for secondary teachers. Many of the students in these classes either have never taken linear algebra or else have taken it too long ago to recall even the basic ideas. It turns out that very little is lost here by not assuming linear algebra. A preliminary version of the text was written for and used in two courses-one was a graduate course for teachers and the other a sophomore course designed for the prospective teacher and the general mathematics major taking one course in geometry |
Beschreibung: | 1 Online-Ressource (XII, 240 p) |
ISBN: | 9781461256809 9781461256823 |
ISSN: | 0172-6056 |
DOI: | 10.1007/978-1-4612-5680-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420415 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1982 |||| o||u| ||||||eng d | ||
020 | |a 9781461256809 |c Online |9 978-1-4612-5680-9 | ||
020 | |a 9781461256823 |c Print |9 978-1-4612-5682-3 | ||
024 | 7 | |a 10.1007/978-1-4612-5680-9 |2 doi | |
035 | |a (OCoLC)863785935 | ||
035 | |a (DE-599)BVBBV042420415 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Martin, George E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transformation Geometry |b An Introduction to Symmetry |c by George E. Martin |
264 | 1 | |a New York, NY |b Springer New York |c 1982 | |
300 | |a 1 Online-Ressource (XII, 240 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Undergraduate Texts in Mathematics |x 0172-6056 | |
500 | |a Transformation geometry is a relatively recent expression of the successful venture of bringing together geometry and algebra. The name describes an approach as much as the content. Our subject is Euclidean geometry. Essential to the study of the plane or any mathematical system is an under standing of the transformations on that system that preserve designated features of the system. Our study of the automorphisms of the plane and of space is based on only the most elementary high-school geometry. In particular, group theory is not a prerequisite here. On the contrary, this modern approach to Euclidean geometry gives the concrete examples that are necessary to appreciate an introduction to group theory. Therefore, a course based on this text is an excellent prerequisite to the standard course in abstract algebra taken by every undergraduate mathematics major. An advantage of having nb college mathematics prerequisite to our study is that the text is then useful for graduate mathematics courses designed for secondary teachers. Many of the students in these classes either have never taken linear algebra or else have taken it too long ago to recall even the basic ideas. It turns out that very little is lost here by not assuming linear algebra. A preliminary version of the text was written for and used in two courses-one was a graduate course for teachers and the other a sophomore course designed for the prospective teacher and the general mathematics major taking one course in geometry | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transformationsgruppe |0 (DE-588)4127386-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transformation |g Mathematik |0 (DE-588)4060637-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Transformation |0 (DE-588)4156725-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Transformationsgruppe |0 (DE-588)4127386-2 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 1 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 2 | 1 | |a Transformation |g Mathematik |0 (DE-588)4060637-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Transformationsgruppe |0 (DE-588)4127386-2 |D s |
689 | 3 | 1 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Geometrische Transformation |0 (DE-588)4156725-0 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-5680-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855832 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092293263360 |
---|---|
any_adam_object | |
author | Martin, George E. |
author_facet | Martin, George E. |
author_role | aut |
author_sort | Martin, George E. |
author_variant | g e m ge gem |
building | Verbundindex |
bvnumber | BV042420415 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863785935 (DE-599)BVBBV042420415 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-5680-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04258nmm a2200697zc 4500</leader><controlfield tag="001">BV042420415</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461256809</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-5680-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461256823</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-5682-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-5680-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863785935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420415</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martin, George E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transformation Geometry</subfield><subfield code="b">An Introduction to Symmetry</subfield><subfield code="c">by George E. Martin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 240 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate Texts in Mathematics</subfield><subfield code="x">0172-6056</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Transformation geometry is a relatively recent expression of the successful venture of bringing together geometry and algebra. The name describes an approach as much as the content. Our subject is Euclidean geometry. Essential to the study of the plane or any mathematical system is an under standing of the transformations on that system that preserve designated features of the system. Our study of the automorphisms of the plane and of space is based on only the most elementary high-school geometry. In particular, group theory is not a prerequisite here. On the contrary, this modern approach to Euclidean geometry gives the concrete examples that are necessary to appreciate an introduction to group theory. Therefore, a course based on this text is an excellent prerequisite to the standard course in abstract algebra taken by every undergraduate mathematics major. An advantage of having nb college mathematics prerequisite to our study is that the text is then useful for graduate mathematics courses designed for secondary teachers. Many of the students in these classes either have never taken linear algebra or else have taken it too long ago to recall even the basic ideas. It turns out that very little is lost here by not assuming linear algebra. A preliminary version of the text was written for and used in two courses-one was a graduate course for teachers and the other a sophomore course designed for the prospective teacher and the general mathematics major taking one course in geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transformationsgruppe</subfield><subfield code="0">(DE-588)4127386-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transformation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4060637-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Transformation</subfield><subfield code="0">(DE-588)4156725-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Transformationsgruppe</subfield><subfield code="0">(DE-588)4127386-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Transformation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4060637-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Transformationsgruppe</subfield><subfield code="0">(DE-588)4127386-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Geometrische Transformation</subfield><subfield code="0">(DE-588)4156725-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-5680-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855832</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420415 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461256809 9781461256823 |
issn | 0172-6056 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855832 |
oclc_num | 863785935 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 240 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer New York |
record_format | marc |
series2 | Undergraduate Texts in Mathematics |
spelling | Martin, George E. Verfasser aut Transformation Geometry An Introduction to Symmetry by George E. Martin New York, NY Springer New York 1982 1 Online-Ressource (XII, 240 p) txt rdacontent c rdamedia cr rdacarrier Undergraduate Texts in Mathematics 0172-6056 Transformation geometry is a relatively recent expression of the successful venture of bringing together geometry and algebra. The name describes an approach as much as the content. Our subject is Euclidean geometry. Essential to the study of the plane or any mathematical system is an under standing of the transformations on that system that preserve designated features of the system. Our study of the automorphisms of the plane and of space is based on only the most elementary high-school geometry. In particular, group theory is not a prerequisite here. On the contrary, this modern approach to Euclidean geometry gives the concrete examples that are necessary to appreciate an introduction to group theory. Therefore, a course based on this text is an excellent prerequisite to the standard course in abstract algebra taken by every undergraduate mathematics major. An advantage of having nb college mathematics prerequisite to our study is that the text is then useful for graduate mathematics courses designed for secondary teachers. Many of the students in these classes either have never taken linear algebra or else have taken it too long ago to recall even the basic ideas. It turns out that very little is lost here by not assuming linear algebra. A preliminary version of the text was written for and used in two courses-one was a graduate course for teachers and the other a sophomore course designed for the prospective teacher and the general mathematics major taking one course in geometry Mathematics Geometry Mathematik Geometrie (DE-588)4020236-7 gnd rswk-swf Euklidische Geometrie (DE-588)4137555-5 gnd rswk-swf Transformationsgruppe (DE-588)4127386-2 gnd rswk-swf Transformation Mathematik (DE-588)4060637-5 gnd rswk-swf Geometrische Transformation (DE-588)4156725-0 gnd rswk-swf Symmetrie (DE-588)4058724-1 gnd rswk-swf Transformationsgruppe (DE-588)4127386-2 s Geometrie (DE-588)4020236-7 s 1\p DE-604 Symmetrie (DE-588)4058724-1 s 2\p DE-604 Transformation Mathematik (DE-588)4060637-5 s 3\p DE-604 Euklidische Geometrie (DE-588)4137555-5 s 4\p DE-604 Geometrische Transformation (DE-588)4156725-0 s 5\p DE-604 https://doi.org/10.1007/978-1-4612-5680-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Martin, George E. Transformation Geometry An Introduction to Symmetry Mathematics Geometry Mathematik Geometrie (DE-588)4020236-7 gnd Euklidische Geometrie (DE-588)4137555-5 gnd Transformationsgruppe (DE-588)4127386-2 gnd Transformation Mathematik (DE-588)4060637-5 gnd Geometrische Transformation (DE-588)4156725-0 gnd Symmetrie (DE-588)4058724-1 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4137555-5 (DE-588)4127386-2 (DE-588)4060637-5 (DE-588)4156725-0 (DE-588)4058724-1 |
title | Transformation Geometry An Introduction to Symmetry |
title_auth | Transformation Geometry An Introduction to Symmetry |
title_exact_search | Transformation Geometry An Introduction to Symmetry |
title_full | Transformation Geometry An Introduction to Symmetry by George E. Martin |
title_fullStr | Transformation Geometry An Introduction to Symmetry by George E. Martin |
title_full_unstemmed | Transformation Geometry An Introduction to Symmetry by George E. Martin |
title_short | Transformation Geometry |
title_sort | transformation geometry an introduction to symmetry |
title_sub | An Introduction to Symmetry |
topic | Mathematics Geometry Mathematik Geometrie (DE-588)4020236-7 gnd Euklidische Geometrie (DE-588)4137555-5 gnd Transformationsgruppe (DE-588)4127386-2 gnd Transformation Mathematik (DE-588)4060637-5 gnd Geometrische Transformation (DE-588)4156725-0 gnd Symmetrie (DE-588)4058724-1 gnd |
topic_facet | Mathematics Geometry Mathematik Geometrie Euklidische Geometrie Transformationsgruppe Transformation Mathematik Geometrische Transformation Symmetrie |
url | https://doi.org/10.1007/978-1-4612-5680-9 |
work_keys_str_mv | AT martingeorgee transformationgeometryanintroductiontosymmetry |