Specifying Statistical Models: From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1983
|
Schriftenreihe: | Lecture Notes in Statistics
16 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | During the last decades. the evolution of theoretical statistics has been marked by a considerable expansion of the number of mathematically and computationaly tractable models. Faced with this inflation, applied statisticians feel more and more uncomfortable: they are often hesitant about their traditional (typically parametric) assumptions, such as normal and i. i. d . - ARMA forms for time-series. etc . - but are at the same time afraid of venturing into the jungle of less familiar models. The problem of the justification for taking up one model rather than another one is thus a crucial one. and can take different forms. (a) ~~~£ifi~~~iQ~ : Do observations suggest the use of a different model from the one initially proposed (e. g. one which takes account of outliers). or do they render plausible a choice from among different proposed models (e. g. fixing or not the value of a certain parameter) ? (b) tlQ~~L~~l!rQ1!iIMHQ~ : How is it possible to compute a "distance" between a given model and a less (or more) sophisticated one. and what is the technical meaning of such a "distance" ? (c) BQe~~~~~~ : To what extent do the qualities of a procedure. well adapted to a "small" model. deteriorate when this model is replaced by a more general one? This question can be considered not only as usual in a parametric framework (contamination) or in the extension from parametric to non parametric models but also |
Beschreibung: | 1 Online-Ressource (XII, 204 p) |
ISBN: | 9781461255031 9780387908090 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4612-5503-1 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420397 | ||
003 | DE-604 | ||
005 | 20230508 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1983 xx o|||| 10||| eng d | ||
020 | |a 9781461255031 |c Online |9 978-1-4612-5503-1 | ||
020 | |a 9780387908090 |c Print |9 978-0-387-90809-0 | ||
024 | 7 | |a 10.1007/978-1-4612-5503-1 |2 doi | |
035 | |a (OCoLC)863793855 | ||
035 | |a (DE-599)BVBBV042420397 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Specifying Statistical Models |b From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches |c edited by J. P. Florens, M. Mouchart, J. P. Raoult, L. Simar, A. F. M. Smith |
246 | 1 | 3 | |a Proceedings of the Second Franco-Belgian Meeting of Statisticians, held in Louvain-la-Neuve, Belgium, October 15-16, 1981 |
264 | 1 | |a New York, NY |b Springer New York |c 1983 | |
300 | |a 1 Online-Ressource (XII, 204 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Statistics |v 16 |x 0930-0325 | |
500 | |a During the last decades. the evolution of theoretical statistics has been marked by a considerable expansion of the number of mathematically and computationaly tractable models. Faced with this inflation, applied statisticians feel more and more uncomfortable: they are often hesitant about their traditional (typically parametric) assumptions, such as normal and i. i. d . - ARMA forms for time-series. etc . - but are at the same time afraid of venturing into the jungle of less familiar models. The problem of the justification for taking up one model rather than another one is thus a crucial one. and can take different forms. (a) ~~~£ifi~~~iQ~ : Do observations suggest the use of a different model from the one initially proposed (e. g. one which takes account of outliers). or do they render plausible a choice from among different proposed models (e. g. fixing or not the value of a certain parameter) ? (b) tlQ~~L~~l!rQ1!iIMHQ~ : How is it possible to compute a "distance" between a given model and a less (or more) sophisticated one. and what is the technical meaning of such a "distance" ? (c) BQe~~~~~~ : To what extent do the qualities of a procedure. well adapted to a "small" model. deteriorate when this model is replaced by a more general one? This question can be considered not only as usual in a parametric framework (contamination) or in the extension from parametric to non parametric models but also | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistisches Modell |0 (DE-588)4121722-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1981 |z Louvain-la-Neuve |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Statistisches Modell |0 (DE-588)4121722-6 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
689 | 2 | 0 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 2 | |8 5\p |5 DE-604 | |
700 | 1 | |a Florens, J. P. |4 edt | |
700 | 1 | |a Mouchart, M. |4 edt | |
700 | 1 | |a Raoult, J. P. |4 edt | |
700 | 1 | |a Simar, L. |4 edt | |
700 | 1 | |a Smith, A. F. M. |4 edt | |
830 | 0 | |a Lecture Notes in Statistics |v 16 |w (DE-604)BV036592911 |9 16 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-5503-1 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027855814 |
Datensatz im Suchindex
_version_ | 1817681164195856384 |
---|---|
adam_text | |
any_adam_object | |
author2 | Florens, J. P. Mouchart, M. Raoult, J. P. Simar, L. Smith, A. F. M. |
author2_role | edt edt edt edt edt |
author2_variant | j p f jp jpf m m mm j p r jp jpr l s ls a f m s afm afms |
author_facet | Florens, J. P. Mouchart, M. Raoult, J. P. Simar, L. Smith, A. F. M. |
building | Verbundindex |
bvnumber | BV042420397 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863793855 (DE-599)BVBBV042420397 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-5503-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV042420397</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230508</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1983 xx o|||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461255031</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-5503-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387908090</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90809-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-5503-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863793855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420397</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Specifying Statistical Models</subfield><subfield code="b">From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches</subfield><subfield code="c">edited by J. P. Florens, M. Mouchart, J. P. Raoult, L. Simar, A. F. M. Smith</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of the Second Franco-Belgian Meeting of Statisticians, held in Louvain-la-Neuve, Belgium, October 15-16, 1981</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 204 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">16</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">During the last decades. the evolution of theoretical statistics has been marked by a considerable expansion of the number of mathematically and computationaly tractable models. Faced with this inflation, applied statisticians feel more and more uncomfortable: they are often hesitant about their traditional (typically parametric) assumptions, such as normal and i. i. d . - ARMA forms for time-series. etc . - but are at the same time afraid of venturing into the jungle of less familiar models. The problem of the justification for taking up one model rather than another one is thus a crucial one. and can take different forms. (a) ~~~£ifi~~~iQ~ : Do observations suggest the use of a different model from the one initially proposed (e. g. one which takes account of outliers). or do they render plausible a choice from among different proposed models (e. g. fixing or not the value of a certain parameter) ? (b) tlQ~~L~~l!rQ1!iIMHQ~ : How is it possible to compute a "distance" between a given model and a less (or more) sophisticated one. and what is the technical meaning of such a "distance" ? (c) BQe~~~~~~ : To what extent do the qualities of a procedure. well adapted to a "small" model. deteriorate when this model is replaced by a more general one? This question can be considered not only as usual in a parametric framework (contamination) or in the extension from parametric to non parametric models but also</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1981</subfield><subfield code="z">Louvain-la-Neuve</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Florens, J. P.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mouchart, M.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raoult, J. P.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simar, L.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, A. F. M.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">16</subfield><subfield code="w">(DE-604)BV036592911</subfield><subfield code="9">16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-5503-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855814</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1981 Louvain-la-Neuve gnd-content 2\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift 1981 Louvain-la-Neuve Konferenzschrift |
id | DE-604.BV042420397 |
illustrated | Not Illustrated |
indexdate | 2024-12-06T09:04:01Z |
institution | BVB |
isbn | 9781461255031 9780387908090 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855814 |
oclc_num | 863793855 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 204 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Springer New York |
record_format | marc |
series | Lecture Notes in Statistics |
series2 | Lecture Notes in Statistics |
spelling | Specifying Statistical Models From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches edited by J. P. Florens, M. Mouchart, J. P. Raoult, L. Simar, A. F. M. Smith Proceedings of the Second Franco-Belgian Meeting of Statisticians, held in Louvain-la-Neuve, Belgium, October 15-16, 1981 New York, NY Springer New York 1983 1 Online-Ressource (XII, 204 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 16 0930-0325 During the last decades. the evolution of theoretical statistics has been marked by a considerable expansion of the number of mathematically and computationaly tractable models. Faced with this inflation, applied statisticians feel more and more uncomfortable: they are often hesitant about their traditional (typically parametric) assumptions, such as normal and i. i. d . - ARMA forms for time-series. etc . - but are at the same time afraid of venturing into the jungle of less familiar models. The problem of the justification for taking up one model rather than another one is thus a crucial one. and can take different forms. (a) ~~~£ifi~~~iQ~ : Do observations suggest the use of a different model from the one initially proposed (e. g. one which takes account of outliers). or do they render plausible a choice from among different proposed models (e. g. fixing or not the value of a certain parameter) ? (b) tlQ~~L~~l!rQ1!iIMHQ~ : How is it possible to compute a "distance" between a given model and a less (or more) sophisticated one. and what is the technical meaning of such a "distance" ? (c) BQe~~~~~~ : To what extent do the qualities of a procedure. well adapted to a "small" model. deteriorate when this model is replaced by a more general one? This question can be considered not only as usual in a parametric framework (contamination) or in the extension from parametric to non parametric models but also Statistics Statistics, general Statistik Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf Statistisches Modell (DE-588)4121722-6 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1981 Louvain-la-Neuve gnd-content 2\p (DE-588)1071861417 Konferenzschrift gnd-content Statistik (DE-588)4056995-0 s 3\p DE-604 Statistisches Modell (DE-588)4121722-6 s 4\p DE-604 Bayes-Verfahren (DE-588)4204326-8 s 5\p DE-604 Florens, J. P. edt Mouchart, M. edt Raoult, J. P. edt Simar, L. edt Smith, A. F. M. edt Lecture Notes in Statistics 16 (DE-604)BV036592911 16 https://doi.org/10.1007/978-1-4612-5503-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Specifying Statistical Models From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches Lecture Notes in Statistics Statistics Statistics, general Statistik Bayes-Verfahren (DE-588)4204326-8 gnd Statistisches Modell (DE-588)4121722-6 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4204326-8 (DE-588)4121722-6 (DE-588)4056995-0 (DE-588)1071861417 |
title | Specifying Statistical Models From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches |
title_alt | Proceedings of the Second Franco-Belgian Meeting of Statisticians, held in Louvain-la-Neuve, Belgium, October 15-16, 1981 |
title_auth | Specifying Statistical Models From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches |
title_exact_search | Specifying Statistical Models From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches |
title_full | Specifying Statistical Models From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches edited by J. P. Florens, M. Mouchart, J. P. Raoult, L. Simar, A. F. M. Smith |
title_fullStr | Specifying Statistical Models From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches edited by J. P. Florens, M. Mouchart, J. P. Raoult, L. Simar, A. F. M. Smith |
title_full_unstemmed | Specifying Statistical Models From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches edited by J. P. Florens, M. Mouchart, J. P. Raoult, L. Simar, A. F. M. Smith |
title_short | Specifying Statistical Models |
title_sort | specifying statistical models from parametric to non parametric using bayesian or non bayesian approaches |
title_sub | From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches |
topic | Statistics Statistics, general Statistik Bayes-Verfahren (DE-588)4204326-8 gnd Statistisches Modell (DE-588)4121722-6 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | Statistics Statistics, general Statistik Bayes-Verfahren Statistisches Modell Konferenzschrift 1981 Louvain-la-Neuve Konferenzschrift |
url | https://doi.org/10.1007/978-1-4612-5503-1 |
volume_link | (DE-604)BV036592911 |
work_keys_str_mv | AT florensjp specifyingstatisticalmodelsfromparametrictononparametricusingbayesianornonbayesianapproaches AT mouchartm specifyingstatisticalmodelsfromparametrictononparametricusingbayesianornonbayesianapproaches AT raoultjp specifyingstatisticalmodelsfromparametrictononparametricusingbayesianornonbayesianapproaches AT simarl specifyingstatisticalmodelsfromparametrictononparametricusingbayesianornonbayesianapproaches AT smithafm specifyingstatisticalmodelsfromparametrictononparametricusingbayesianornonbayesianapproaches AT florensjp proceedingsofthesecondfrancobelgianmeetingofstatisticiansheldinlouvainlaneuvebelgiumoctober15161981 AT mouchartm proceedingsofthesecondfrancobelgianmeetingofstatisticiansheldinlouvainlaneuvebelgiumoctober15161981 AT raoultjp proceedingsofthesecondfrancobelgianmeetingofstatisticiansheldinlouvainlaneuvebelgiumoctober15161981 AT simarl proceedingsofthesecondfrancobelgianmeetingofstatisticiansheldinlouvainlaneuvebelgiumoctober15161981 AT smithafm proceedingsofthesecondfrancobelgianmeetingofstatisticiansheldinlouvainlaneuvebelgiumoctober15161981 |