Structure of Decidable Locally Finite Varieties:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1989
|
Schriftenreihe: | Progress in Mathematics
79 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propositions of arithmetic. During the 1930s, in the work of such mathematicians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church proposed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)- i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The determination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A. |
Beschreibung: | 1 Online-Ressource (VIII, 216 p) |
ISBN: | 9781461245520 9781461289081 |
DOI: | 10.1007/978-1-4612-4552-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420310 | ||
003 | DE-604 | ||
005 | 20180122 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1989 |||| o||u| ||||||eng d | ||
020 | |a 9781461245520 |c Online |9 978-1-4612-4552-0 | ||
020 | |a 9781461289081 |c Print |9 978-1-4612-8908-1 | ||
024 | 7 | |a 10.1007/978-1-4612-4552-0 |2 doi | |
035 | |a (OCoLC)879624670 | ||
035 | |a (DE-599)BVBBV042420310 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a McKenzie, Ralph |e Verfasser |4 aut | |
245 | 1 | 0 | |a Structure of Decidable Locally Finite Varieties |c by Ralph McKenzie, Matthew Valeriote |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1989 | |
300 | |a 1 Online-Ressource (VIII, 216 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 79 | |
500 | |a A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propositions of arithmetic. During the 1930s, in the work of such mathematicians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church proposed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)- i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The determination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a General Algebraic Systems | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Varietät |g Mathematik |0 (DE-588)4325475-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lokal endliche gleichungsdefinierte Klasse |0 (DE-588)4228339-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Universelle Algebra |0 (DE-588)4061777-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidbarkeit |0 (DE-588)4152398-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lokal endliche gleichungsdefinierte Klasse |0 (DE-588)4228339-5 |D s |
689 | 0 | 1 | |a Entscheidbarkeit |0 (DE-588)4152398-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Varietät |g Mathematik |0 (DE-588)4325475-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Universelle Algebra |0 (DE-588)4061777-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Valeriote, Matthew |e Sonstige |4 oth | |
830 | 0 | |a Progress in Mathematics |v 79 |w (DE-604)BV000004120 |9 79 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4552-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855727 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092095082496 |
---|---|
any_adam_object | |
author | McKenzie, Ralph |
author_facet | McKenzie, Ralph |
author_role | aut |
author_sort | McKenzie, Ralph |
author_variant | r m rm |
building | Verbundindex |
bvnumber | BV042420310 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624670 (DE-599)BVBBV042420310 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4552-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03850nmm a2200601zcb4500</leader><controlfield tag="001">BV042420310</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180122 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461245520</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4552-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461289081</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8908-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4552-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420310</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McKenzie, Ralph</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure of Decidable Locally Finite Varieties</subfield><subfield code="c">by Ralph McKenzie, Matthew Valeriote</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 216 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">79</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propositions of arithmetic. During the 1930s, in the work of such mathematicians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church proposed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)- i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The determination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Algebraic Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Varietät</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4325475-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal endliche gleichungsdefinierte Klasse</subfield><subfield code="0">(DE-588)4228339-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidbarkeit</subfield><subfield code="0">(DE-588)4152398-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal endliche gleichungsdefinierte Klasse</subfield><subfield code="0">(DE-588)4228339-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Entscheidbarkeit</subfield><subfield code="0">(DE-588)4152398-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Varietät</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4325475-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valeriote, Matthew</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">79</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">79</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4552-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855727</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420310 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461245520 9781461289081 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855727 |
oclc_num | 879624670 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 216 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | McKenzie, Ralph Verfasser aut Structure of Decidable Locally Finite Varieties by Ralph McKenzie, Matthew Valeriote Boston, MA Birkhäuser Boston 1989 1 Online-Ressource (VIII, 216 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 79 A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propositions of arithmetic. During the 1930s, in the work of such mathematicians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church proposed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)- i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The determination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A. Mathematics Algebra General Algebraic Systems Mathematik Varietät Mathematik (DE-588)4325475-5 gnd rswk-swf Lokal endliche gleichungsdefinierte Klasse (DE-588)4228339-5 gnd rswk-swf Universelle Algebra (DE-588)4061777-4 gnd rswk-swf Entscheidbarkeit (DE-588)4152398-2 gnd rswk-swf Lokal endliche gleichungsdefinierte Klasse (DE-588)4228339-5 s Entscheidbarkeit (DE-588)4152398-2 s 1\p DE-604 Varietät Mathematik (DE-588)4325475-5 s 2\p DE-604 Universelle Algebra (DE-588)4061777-4 s 3\p DE-604 Valeriote, Matthew Sonstige oth Progress in Mathematics 79 (DE-604)BV000004120 79 https://doi.org/10.1007/978-1-4612-4552-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | McKenzie, Ralph Structure of Decidable Locally Finite Varieties Progress in Mathematics Mathematics Algebra General Algebraic Systems Mathematik Varietät Mathematik (DE-588)4325475-5 gnd Lokal endliche gleichungsdefinierte Klasse (DE-588)4228339-5 gnd Universelle Algebra (DE-588)4061777-4 gnd Entscheidbarkeit (DE-588)4152398-2 gnd |
subject_GND | (DE-588)4325475-5 (DE-588)4228339-5 (DE-588)4061777-4 (DE-588)4152398-2 |
title | Structure of Decidable Locally Finite Varieties |
title_auth | Structure of Decidable Locally Finite Varieties |
title_exact_search | Structure of Decidable Locally Finite Varieties |
title_full | Structure of Decidable Locally Finite Varieties by Ralph McKenzie, Matthew Valeriote |
title_fullStr | Structure of Decidable Locally Finite Varieties by Ralph McKenzie, Matthew Valeriote |
title_full_unstemmed | Structure of Decidable Locally Finite Varieties by Ralph McKenzie, Matthew Valeriote |
title_short | Structure of Decidable Locally Finite Varieties |
title_sort | structure of decidable locally finite varieties |
topic | Mathematics Algebra General Algebraic Systems Mathematik Varietät Mathematik (DE-588)4325475-5 gnd Lokal endliche gleichungsdefinierte Klasse (DE-588)4228339-5 gnd Universelle Algebra (DE-588)4061777-4 gnd Entscheidbarkeit (DE-588)4152398-2 gnd |
topic_facet | Mathematics Algebra General Algebraic Systems Mathematik Varietät Mathematik Lokal endliche gleichungsdefinierte Klasse Universelle Algebra Entscheidbarkeit |
url | https://doi.org/10.1007/978-1-4612-4552-0 |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT mckenzieralph structureofdecidablelocallyfinitevarieties AT valeriotematthew structureofdecidablelocallyfinitevarieties |