Iterative Solution of Large Sparse Systems of Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1994
|
Schriftenreihe: | Applied Mathematical Sciences
95 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | C. F. Gauß in a letter from Dec. 26, 1823 to Gerling: Ich empfehle Ihnen diesen Modus zur Nachahmung. Schwerlich werden Sie je wieder direct eliminiren, wenigstens nicht, wenn sie mehr als 2 Unbekannte haben. Das indirecte Verfahren lässt sich halb im Schlafe ausführen, oder man kann während desselben an andere Dinge denken. [C. F. Gauß: Werke vol. 9, Göttingen, p. 280, 1903] What difference exists between solving large and small systems of equations? The standard methods well-known to any student of linear algebra are applicable to all systems, whether large or small. The necessary amount of work, however, increases dramatically with the size, so one has to search for algorithms that most efficiently and accurately solve systems of 1000, 10,000, or even one million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretisation of partial differential equations. In this case, the matrices are sparse (i. e. , they contain mostly zeros) and well-suited to iterative algorithms. Because of the background in partial differential equations, this book is closely connected with the author's Theory and Numerical Treatment of Elliptic Differential Equations, whose English translation has also been published by Springer-Verlag. This book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics |
Beschreibung: | 1 Online-Ressource (XXII, 432 p) |
ISBN: | 9781461242888 9781461287247 |
DOI: | 10.1007/978-1-4612-4288-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420265 | ||
003 | DE-604 | ||
005 | 20200707 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781461242888 |c Online |9 978-1-4612-4288-8 | ||
020 | |a 9781461287247 |c Print |9 978-1-4612-8724-7 | ||
024 | 7 | |a 10.1007/978-1-4612-4288-8 |2 doi | |
035 | |a (OCoLC)863751544 | ||
035 | |a (DE-599)BVBBV042420265 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hackbusch, Wolfgang |d 1948- |e Verfasser |0 (DE-588)115588582 |4 aut | |
245 | 1 | 0 | |a Iterative Solution of Large Sparse Systems of Equations |c by Wolfgang Hackbusch |
264 | 1 | |a New York, NY |b Springer New York |c 1994 | |
300 | |a 1 Online-Ressource (XXII, 432 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Mathematical Sciences |v 95 | |
500 | |a C. F. Gauß in a letter from Dec. 26, 1823 to Gerling: Ich empfehle Ihnen diesen Modus zur Nachahmung. Schwerlich werden Sie je wieder direct eliminiren, wenigstens nicht, wenn sie mehr als 2 Unbekannte haben. Das indirecte Verfahren lässt sich halb im Schlafe ausführen, oder man kann während desselben an andere Dinge denken. [C. F. Gauß: Werke vol. 9, Göttingen, p. 280, 1903] What difference exists between solving large and small systems of equations? The standard methods well-known to any student of linear algebra are applicable to all systems, whether large or small. The necessary amount of work, however, increases dramatically with the size, so one has to search for algorithms that most efficiently and accurately solve systems of 1000, 10,000, or even one million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretisation of partial differential equations. In this case, the matrices are sparse (i. e. , they contain mostly zeros) and well-suited to iterative algorithms. Because of the background in partial differential equations, this book is closely connected with the author's Theory and Numerical Treatment of Elliptic Differential Equations, whose English translation has also been published by Springer-Verlag. This book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Programm |0 (DE-588)4047394-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a PASCAL |g Programmiersprache |0 (DE-588)4044804-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Iteration |0 (DE-588)4123457-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwach besetzte Matrix |0 (DE-588)4056053-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gleichungssystem |0 (DE-588)4128766-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Schwach besetzte Matrix |0 (DE-588)4056053-3 |D s |
689 | 0 | 1 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 3 | |a Programm |0 (DE-588)4047394-6 |D s |
689 | 0 | 4 | |a Gleichungssystem |0 (DE-588)4128766-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Schwach besetzte Matrix |0 (DE-588)4056053-3 |D s |
689 | 1 | 1 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 1 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | 3 | |a PASCAL |g Programmiersprache |0 (DE-588)4044804-6 |D s |
689 | 1 | 4 | |a Programm |0 (DE-588)4047394-6 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
830 | 0 | |a Applied Mathematical Sciences |v 95 |w (DE-604)BV040244599 |9 95 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4288-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855682 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091986030592 |
---|---|
any_adam_object | |
author | Hackbusch, Wolfgang 1948- |
author_GND | (DE-588)115588582 |
author_facet | Hackbusch, Wolfgang 1948- |
author_role | aut |
author_sort | Hackbusch, Wolfgang 1948- |
author_variant | w h wh |
building | Verbundindex |
bvnumber | BV042420265 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863751544 (DE-599)BVBBV042420265 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4288-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04227nmm a2200685zcb4500</leader><controlfield tag="001">BV042420265</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200707 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461242888</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4288-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461287247</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8724-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4288-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863751544</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420265</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hackbusch, Wolfgang</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115588582</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iterative Solution of Large Sparse Systems of Equations</subfield><subfield code="c">by Wolfgang Hackbusch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 432 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">95</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">C. F. Gauß in a letter from Dec. 26, 1823 to Gerling: Ich empfehle Ihnen diesen Modus zur Nachahmung. Schwerlich werden Sie je wieder direct eliminiren, wenigstens nicht, wenn sie mehr als 2 Unbekannte haben. Das indirecte Verfahren lässt sich halb im Schlafe ausführen, oder man kann während desselben an andere Dinge denken. [C. F. Gauß: Werke vol. 9, Göttingen, p. 280, 1903] What difference exists between solving large and small systems of equations? The standard methods well-known to any student of linear algebra are applicable to all systems, whether large or small. The necessary amount of work, however, increases dramatically with the size, so one has to search for algorithms that most efficiently and accurately solve systems of 1000, 10,000, or even one million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretisation of partial differential equations. In this case, the matrices are sparse (i. e. , they contain mostly zeros) and well-suited to iterative algorithms. Because of the background in partial differential equations, this book is closely connected with the author's Theory and Numerical Treatment of Elliptic Differential Equations, whose English translation has also been published by Springer-Verlag. This book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Programm</subfield><subfield code="0">(DE-588)4047394-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">PASCAL</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4044804-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gleichungssystem</subfield><subfield code="0">(DE-588)4128766-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Programm</subfield><subfield code="0">(DE-588)4047394-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Gleichungssystem</subfield><subfield code="0">(DE-588)4128766-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">PASCAL</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4044804-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Programm</subfield><subfield code="0">(DE-588)4047394-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">95</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">95</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4288-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855682</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV042420265 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461242888 9781461287247 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855682 |
oclc_num | 863751544 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 432 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer New York |
record_format | marc |
series | Applied Mathematical Sciences |
series2 | Applied Mathematical Sciences |
spelling | Hackbusch, Wolfgang 1948- Verfasser (DE-588)115588582 aut Iterative Solution of Large Sparse Systems of Equations by Wolfgang Hackbusch New York, NY Springer New York 1994 1 Online-Ressource (XXII, 432 p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 95 C. F. Gauß in a letter from Dec. 26, 1823 to Gerling: Ich empfehle Ihnen diesen Modus zur Nachahmung. Schwerlich werden Sie je wieder direct eliminiren, wenigstens nicht, wenn sie mehr als 2 Unbekannte haben. Das indirecte Verfahren lässt sich halb im Schlafe ausführen, oder man kann während desselben an andere Dinge denken. [C. F. Gauß: Werke vol. 9, Göttingen, p. 280, 1903] What difference exists between solving large and small systems of equations? The standard methods well-known to any student of linear algebra are applicable to all systems, whether large or small. The necessary amount of work, however, increases dramatically with the size, so one has to search for algorithms that most efficiently and accurately solve systems of 1000, 10,000, or even one million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretisation of partial differential equations. In this case, the matrices are sparse (i. e. , they contain mostly zeros) and well-suited to iterative algorithms. Because of the background in partial differential equations, this book is closely connected with the author's Theory and Numerical Treatment of Elliptic Differential Equations, whose English translation has also been published by Springer-Verlag. This book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics Mathematics Numerical analysis Numerical Analysis Mathematik Programm (DE-588)4047394-6 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf PASCAL Programmiersprache (DE-588)4044804-6 gnd rswk-swf Iteration (DE-588)4123457-1 gnd rswk-swf Schwach besetzte Matrix (DE-588)4056053-3 gnd rswk-swf Gleichungssystem (DE-588)4128766-6 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Schwach besetzte Matrix (DE-588)4056053-3 s Iteration (DE-588)4123457-1 s Numerisches Verfahren (DE-588)4128130-5 s Programm (DE-588)4047394-6 s Gleichungssystem (DE-588)4128766-6 s 2\p DE-604 PASCAL Programmiersprache (DE-588)4044804-6 s 3\p DE-604 Applied Mathematical Sciences 95 (DE-604)BV040244599 95 https://doi.org/10.1007/978-1-4612-4288-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hackbusch, Wolfgang 1948- Iterative Solution of Large Sparse Systems of Equations Applied Mathematical Sciences Mathematics Numerical analysis Numerical Analysis Mathematik Programm (DE-588)4047394-6 gnd Numerisches Verfahren (DE-588)4128130-5 gnd PASCAL Programmiersprache (DE-588)4044804-6 gnd Iteration (DE-588)4123457-1 gnd Schwach besetzte Matrix (DE-588)4056053-3 gnd Gleichungssystem (DE-588)4128766-6 gnd |
subject_GND | (DE-588)4047394-6 (DE-588)4128130-5 (DE-588)4044804-6 (DE-588)4123457-1 (DE-588)4056053-3 (DE-588)4128766-6 (DE-588)4113937-9 |
title | Iterative Solution of Large Sparse Systems of Equations |
title_auth | Iterative Solution of Large Sparse Systems of Equations |
title_exact_search | Iterative Solution of Large Sparse Systems of Equations |
title_full | Iterative Solution of Large Sparse Systems of Equations by Wolfgang Hackbusch |
title_fullStr | Iterative Solution of Large Sparse Systems of Equations by Wolfgang Hackbusch |
title_full_unstemmed | Iterative Solution of Large Sparse Systems of Equations by Wolfgang Hackbusch |
title_short | Iterative Solution of Large Sparse Systems of Equations |
title_sort | iterative solution of large sparse systems of equations |
topic | Mathematics Numerical analysis Numerical Analysis Mathematik Programm (DE-588)4047394-6 gnd Numerisches Verfahren (DE-588)4128130-5 gnd PASCAL Programmiersprache (DE-588)4044804-6 gnd Iteration (DE-588)4123457-1 gnd Schwach besetzte Matrix (DE-588)4056053-3 gnd Gleichungssystem (DE-588)4128766-6 gnd |
topic_facet | Mathematics Numerical analysis Numerical Analysis Mathematik Programm Numerisches Verfahren PASCAL Programmiersprache Iteration Schwach besetzte Matrix Gleichungssystem Hochschulschrift |
url | https://doi.org/10.1007/978-1-4612-4288-8 |
volume_link | (DE-604)BV040244599 |
work_keys_str_mv | AT hackbuschwolfgang iterativesolutionoflargesparsesystemsofequations |