The Moduli Space of Curves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1995
|
Schriftenreihe: | Progress in Mathematics
129 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory. Leading experts in the field explore in this volume both the structure of the moduli space of curves and its relationship with physics through quantum cohomology. Altogether, this is a lively volume that testifies to the ferment in the field and gives an excellent view of the state of the art for both mathematicians and theoretical physicists. It is a persuasive example of the famous Wignes comment, and its converse, on "the unreasonable effectiveness of mathematics in the natural science." Witteen’s conjecture in 1990 describing the intersection behavior of tautological classes in the cohomology of Mg arose directly from string theory. Shortly thereafter a stunning proof was provided by Kontsevich who, in this volume, describes his solution to the problem of counting rational curves on certain algebraic varieties and includes numerous suggestions for further development. The same problem is given an elegant treatment in a paper by Manin. There follows a number of contributions to the geometry, cohomology, and arithmetic of the moduli spaces of curves. In addition, several contributors address quantum cohomology and conformal field theory |
Beschreibung: | 1 Online-Ressource (XII, 563p) |
ISBN: | 9781461242642 9781461287148 |
DOI: | 10.1007/978-1-4612-4264-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420258 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461242642 |c Online |9 978-1-4612-4264-2 | ||
020 | |a 9781461287148 |c Print |9 978-1-4612-8714-8 | ||
024 | 7 | |a 10.1007/978-1-4612-4264-2 |2 doi | |
035 | |a (OCoLC)879624698 | ||
035 | |a (DE-599)BVBBV042420258 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dijkgraaf, Robbert H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Moduli Space of Curves |c edited by Robbert H. Dijkgraaf, Carel F. Faber, Gerard B. M. Geer |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1995 | |
300 | |a 1 Online-Ressource (XII, 563p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 129 | |
500 | |a The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory. Leading experts in the field explore in this volume both the structure of the moduli space of curves and its relationship with physics through quantum cohomology. Altogether, this is a lively volume that testifies to the ferment in the field and gives an excellent view of the state of the art for both mathematicians and theoretical physicists. It is a persuasive example of the famous Wignes comment, and its converse, on "the unreasonable effectiveness of mathematics in the natural science." Witteen’s conjecture in 1990 describing the intersection behavior of tautological classes in the cohomology of Mg arose directly from string theory. Shortly thereafter a stunning proof was provided by Kontsevich who, in this volume, describes his solution to the problem of counting rational curves on certain algebraic varieties and includes numerous suggestions for further development. The same problem is given an elegant treatment in a paper by Manin. There follows a number of contributions to the geometry, cohomology, and arithmetic of the moduli spaces of curves. In addition, several contributors address quantum cohomology and conformal field theory | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Topology | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Modulraum |0 (DE-588)4183462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Kurve |0 (DE-588)4001165-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulitheorie |0 (DE-588)4203418-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1994 |z Texel |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 0 | 1 | |a Modulitheorie |0 (DE-588)4203418-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 1 | 1 | |a Modulraum |0 (DE-588)4183462-8 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
700 | 1 | |a Faber, Carel F. |e Sonstige |4 oth | |
700 | 1 | |a Geer, Gerard B. M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4264-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855675 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091958767616 |
---|---|
any_adam_object | |
author | Dijkgraaf, Robbert H. |
author_facet | Dijkgraaf, Robbert H. |
author_role | aut |
author_sort | Dijkgraaf, Robbert H. |
author_variant | r h d rh rhd |
building | Verbundindex |
bvnumber | BV042420258 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624698 (DE-599)BVBBV042420258 |
dewey-full | 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514 |
dewey-search | 514 |
dewey-sort | 3514 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4264-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03842nmm a2200625zcb4500</leader><controlfield tag="001">BV042420258</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461242642</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4264-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461287148</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8714-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4264-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624698</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420258</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dijkgraaf, Robbert H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Moduli Space of Curves</subfield><subfield code="c">edited by Robbert H. Dijkgraaf, Carel F. Faber, Gerard B. M. Geer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 563p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">129</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory. Leading experts in the field explore in this volume both the structure of the moduli space of curves and its relationship with physics through quantum cohomology. Altogether, this is a lively volume that testifies to the ferment in the field and gives an excellent view of the state of the art for both mathematicians and theoretical physicists. It is a persuasive example of the famous Wignes comment, and its converse, on "the unreasonable effectiveness of mathematics in the natural science." Witteen’s conjecture in 1990 describing the intersection behavior of tautological classes in the cohomology of Mg arose directly from string theory. Shortly thereafter a stunning proof was provided by Kontsevich who, in this volume, describes his solution to the problem of counting rational curves on certain algebraic varieties and includes numerous suggestions for further development. The same problem is given an elegant treatment in a paper by Manin. There follows a number of contributions to the geometry, cohomology, and arithmetic of the moduli spaces of curves. In addition, several contributors address quantum cohomology and conformal field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulitheorie</subfield><subfield code="0">(DE-588)4203418-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1994</subfield><subfield code="z">Texel</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modulitheorie</subfield><subfield code="0">(DE-588)4203418-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Faber, Carel F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geer, Gerard B. M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4264-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855675</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1994 Texel gnd-content |
genre_facet | Konferenzschrift 1994 Texel |
id | DE-604.BV042420258 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461242642 9781461287148 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855675 |
oclc_num | 879624698 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 563p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Dijkgraaf, Robbert H. Verfasser aut The Moduli Space of Curves edited by Robbert H. Dijkgraaf, Carel F. Faber, Gerard B. M. Geer Boston, MA Birkhäuser Boston 1995 1 Online-Ressource (XII, 563p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 129 The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory. Leading experts in the field explore in this volume both the structure of the moduli space of curves and its relationship with physics through quantum cohomology. Altogether, this is a lively volume that testifies to the ferment in the field and gives an excellent view of the state of the art for both mathematicians and theoretical physicists. It is a persuasive example of the famous Wignes comment, and its converse, on "the unreasonable effectiveness of mathematics in the natural science." Witteen’s conjecture in 1990 describing the intersection behavior of tautological classes in the cohomology of Mg arose directly from string theory. Shortly thereafter a stunning proof was provided by Kontsevich who, in this volume, describes his solution to the problem of counting rational curves on certain algebraic varieties and includes numerous suggestions for further development. The same problem is given an elegant treatment in a paper by Manin. There follows a number of contributions to the geometry, cohomology, and arithmetic of the moduli spaces of curves. In addition, several contributors address quantum cohomology and conformal field theory Mathematics Geometry, algebraic Topology Algebraic topology Algebraic Topology Algebraic Geometry Mathematik Modulraum (DE-588)4183462-8 gnd rswk-swf Algebraische Kurve (DE-588)4001165-3 gnd rswk-swf Modulitheorie (DE-588)4203418-8 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1994 Texel gnd-content Algebraische Kurve (DE-588)4001165-3 s Modulitheorie (DE-588)4203418-8 s 2\p DE-604 Modulraum (DE-588)4183462-8 s 3\p DE-604 Faber, Carel F. Sonstige oth Geer, Gerard B. M. Sonstige oth https://doi.org/10.1007/978-1-4612-4264-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dijkgraaf, Robbert H. The Moduli Space of Curves Mathematics Geometry, algebraic Topology Algebraic topology Algebraic Topology Algebraic Geometry Mathematik Modulraum (DE-588)4183462-8 gnd Algebraische Kurve (DE-588)4001165-3 gnd Modulitheorie (DE-588)4203418-8 gnd |
subject_GND | (DE-588)4183462-8 (DE-588)4001165-3 (DE-588)4203418-8 (DE-588)1071861417 |
title | The Moduli Space of Curves |
title_auth | The Moduli Space of Curves |
title_exact_search | The Moduli Space of Curves |
title_full | The Moduli Space of Curves edited by Robbert H. Dijkgraaf, Carel F. Faber, Gerard B. M. Geer |
title_fullStr | The Moduli Space of Curves edited by Robbert H. Dijkgraaf, Carel F. Faber, Gerard B. M. Geer |
title_full_unstemmed | The Moduli Space of Curves edited by Robbert H. Dijkgraaf, Carel F. Faber, Gerard B. M. Geer |
title_short | The Moduli Space of Curves |
title_sort | the moduli space of curves |
topic | Mathematics Geometry, algebraic Topology Algebraic topology Algebraic Topology Algebraic Geometry Mathematik Modulraum (DE-588)4183462-8 gnd Algebraische Kurve (DE-588)4001165-3 gnd Modulitheorie (DE-588)4203418-8 gnd |
topic_facet | Mathematics Geometry, algebraic Topology Algebraic topology Algebraic Topology Algebraic Geometry Mathematik Modulraum Algebraische Kurve Modulitheorie Konferenzschrift 1994 Texel |
url | https://doi.org/10.1007/978-1-4612-4264-2 |
work_keys_str_mv | AT dijkgraafrobberth themodulispaceofcurves AT fabercarelf themodulispaceofcurves AT geergerardbm themodulispaceofcurves |