Integration and Probability:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1995
|
Schriftenreihe: | Graduate Texts in Mathematics
157 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | It is a distinct pleasure to have the opportunity to introduce Professor Malliavin's book to the English-speaking mathematical world. In recent years there has been a noticeable retreat from the level of abstraction at which graduate-level courses in analysis were previously taught in the United States and elsewhere. In contrast to the practices used in the 1950s and 1960s, when great emphasis was placed on the most general context for integration and operator theory, we have recently witnessed an increased emphasis on detailed discussion of integration over Euclidean space and related problems in probability theory, harmonic analysis, and partial differential equations. Professor Malliavin is uniquely qualified to introduce the student to analysis with the proper mix of abstract theories and concrete problems. His mathematical career includes many notable contributions to harmonic analysis, complex analysis, and related problems in probability theory and partial differential equations. Rather than developed as a thing-in-itself, the abstract approach serves as a context into which special models can be couched. For example, the general theory of integration is developed at an abstract level, and only then specialized to discuss the Lebesgue measure and integral on the real line. Another important area is the entire theory of probability, where we prefer to have the abstract model in mind, with no other specialization than total unit mass. Generally, we learn to work at an abstract level so that we can specialize when appropriate |
Beschreibung: | 1 Online-Ressource (XXII, 326 p) |
ISBN: | 9781461242024 9781461286943 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4612-4202-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420242 | ||
003 | DE-604 | ||
005 | 20210216 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461242024 |c Online |9 978-1-4612-4202-4 | ||
020 | |a 9781461286943 |c Print |9 978-1-4612-8694-3 | ||
024 | 7 | |a 10.1007/978-1-4612-4202-4 |2 doi | |
035 | |a (OCoLC)863757705 | ||
035 | |a (DE-599)BVBBV042420242 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Malliavin, Paul |d 1925-2010 |e Verfasser |0 (DE-588)115728023 |4 aut | |
245 | 1 | 0 | |a Integration and Probability |c by Paul Malliavin |
264 | 1 | |a New York, NY |b Springer New York |c 1995 | |
300 | |a 1 Online-Ressource (XXII, 326 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Graduate Texts in Mathematics |v 157 |x 0072-5285 | |
500 | |a It is a distinct pleasure to have the opportunity to introduce Professor Malliavin's book to the English-speaking mathematical world. In recent years there has been a noticeable retreat from the level of abstraction at which graduate-level courses in analysis were previously taught in the United States and elsewhere. In contrast to the practices used in the 1950s and 1960s, when great emphasis was placed on the most general context for integration and operator theory, we have recently witnessed an increased emphasis on detailed discussion of integration over Euclidean space and related problems in probability theory, harmonic analysis, and partial differential equations. Professor Malliavin is uniquely qualified to introduce the student to analysis with the proper mix of abstract theories and concrete problems. His mathematical career includes many notable contributions to harmonic analysis, complex analysis, and related problems in probability theory and partial differential equations. Rather than developed as a thing-in-itself, the abstract approach serves as a context into which special models can be couched. For example, the general theory of integration is developed at an abstract level, and only then specialized to discuss the Lebesgue measure and integral on the real line. Another important area is the entire theory of probability, where we prefer to have the abstract model in mind, with no other specialization than total unit mass. Generally, we learn to work at an abstract level so that we can specialize when appropriate | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integration |g Mathematik |0 (DE-588)4072852-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Integration |g Mathematik |0 (DE-588)4072852-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
830 | 0 | |a Graduate Texts in Mathematics |v 157 |w (DE-604)BV035421258 |9 157 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4202-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855659 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091936747520 |
---|---|
any_adam_object | |
author | Malliavin, Paul 1925-2010 |
author_GND | (DE-588)115728023 |
author_facet | Malliavin, Paul 1925-2010 |
author_role | aut |
author_sort | Malliavin, Paul 1925-2010 |
author_variant | p m pm |
building | Verbundindex |
bvnumber | BV042420242 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863757705 (DE-599)BVBBV042420242 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4202-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03959nmm a2200613zcb4500</leader><controlfield tag="001">BV042420242</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461242024</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4202-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461286943</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8694-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4202-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863757705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420242</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malliavin, Paul</subfield><subfield code="d">1925-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115728023</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integration and Probability</subfield><subfield code="c">by Paul Malliavin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 326 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">157</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It is a distinct pleasure to have the opportunity to introduce Professor Malliavin's book to the English-speaking mathematical world. In recent years there has been a noticeable retreat from the level of abstraction at which graduate-level courses in analysis were previously taught in the United States and elsewhere. In contrast to the practices used in the 1950s and 1960s, when great emphasis was placed on the most general context for integration and operator theory, we have recently witnessed an increased emphasis on detailed discussion of integration over Euclidean space and related problems in probability theory, harmonic analysis, and partial differential equations. Professor Malliavin is uniquely qualified to introduce the student to analysis with the proper mix of abstract theories and concrete problems. His mathematical career includes many notable contributions to harmonic analysis, complex analysis, and related problems in probability theory and partial differential equations. Rather than developed as a thing-in-itself, the abstract approach serves as a context into which special models can be couched. For example, the general theory of integration is developed at an abstract level, and only then specialized to discuss the Lebesgue measure and integral on the real line. Another important area is the entire theory of probability, where we prefer to have the abstract model in mind, with no other specialization than total unit mass. Generally, we learn to work at an abstract level so that we can specialize when appropriate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">157</subfield><subfield code="w">(DE-604)BV035421258</subfield><subfield code="9">157</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4202-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855659</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420242 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461242024 9781461286943 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855659 |
oclc_num | 863757705 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 326 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer New York |
record_format | marc |
series | Graduate Texts in Mathematics |
series2 | Graduate Texts in Mathematics |
spelling | Malliavin, Paul 1925-2010 Verfasser (DE-588)115728023 aut Integration and Probability by Paul Malliavin New York, NY Springer New York 1995 1 Online-Ressource (XXII, 326 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 157 0072-5285 It is a distinct pleasure to have the opportunity to introduce Professor Malliavin's book to the English-speaking mathematical world. In recent years there has been a noticeable retreat from the level of abstraction at which graduate-level courses in analysis were previously taught in the United States and elsewhere. In contrast to the practices used in the 1950s and 1960s, when great emphasis was placed on the most general context for integration and operator theory, we have recently witnessed an increased emphasis on detailed discussion of integration over Euclidean space and related problems in probability theory, harmonic analysis, and partial differential equations. Professor Malliavin is uniquely qualified to introduce the student to analysis with the proper mix of abstract theories and concrete problems. His mathematical career includes many notable contributions to harmonic analysis, complex analysis, and related problems in probability theory and partial differential equations. Rather than developed as a thing-in-itself, the abstract approach serves as a context into which special models can be couched. For example, the general theory of integration is developed at an abstract level, and only then specialized to discuss the Lebesgue measure and integral on the real line. Another important area is the entire theory of probability, where we prefer to have the abstract model in mind, with no other specialization than total unit mass. Generally, we learn to work at an abstract level so that we can specialize when appropriate Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Integration Mathematik (DE-588)4072852-3 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 s 1\p DE-604 Integration Mathematik (DE-588)4072852-3 s 2\p DE-604 Wahrscheinlichkeitstheorie (DE-588)4079013-7 s 3\p DE-604 Spektraltheorie (DE-588)4116561-5 s 4\p DE-604 Graduate Texts in Mathematics 157 (DE-604)BV035421258 157 https://doi.org/10.1007/978-1-4612-4202-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Malliavin, Paul 1925-2010 Integration and Probability Graduate Texts in Mathematics Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Harmonische Analyse (DE-588)4023453-8 gnd Integration Mathematik (DE-588)4072852-3 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Spektraltheorie (DE-588)4116561-5 gnd |
subject_GND | (DE-588)4023453-8 (DE-588)4072852-3 (DE-588)4079013-7 (DE-588)4116561-5 |
title | Integration and Probability |
title_auth | Integration and Probability |
title_exact_search | Integration and Probability |
title_full | Integration and Probability by Paul Malliavin |
title_fullStr | Integration and Probability by Paul Malliavin |
title_full_unstemmed | Integration and Probability by Paul Malliavin |
title_short | Integration and Probability |
title_sort | integration and probability |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Harmonische Analyse (DE-588)4023453-8 gnd Integration Mathematik (DE-588)4072852-3 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Spektraltheorie (DE-588)4116561-5 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Harmonische Analyse Integration Mathematik Wahrscheinlichkeitstheorie Spektraltheorie |
url | https://doi.org/10.1007/978-1-4612-4202-4 |
volume_link | (DE-604)BV035421258 |
work_keys_str_mv | AT malliavinpaul integrationandprobability |