Classical Descriptive Set Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1995
|
Schriftenreihe: | Graduate Texts in Mathematics
156 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text attempts to present a largely balanced approach, which combines many elements of the different traditions of the subject. It includes a wide variety of examples, exercises (over 400), and applications, in order to illustrate the general concepts and results of the theory. This text provides a first basic course in classical descriptive set theory and covers material with which mathematicians interested in the subject for its own sake or those that wish to use it in their field should be familiar. Over the years, researchers in diverse areas of mathematics, such as logic and set theory, analysis, topology, probability theory, etc., have brought to the subject of descriptive set theory their own intuitions, concepts, terminology and notation |
Beschreibung: | 1 Online-Ressource (XVIII, 404 p) |
ISBN: | 9781461241904 9781461286929 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4612-4190-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420240 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461241904 |c Online |9 978-1-4612-4190-4 | ||
020 | |a 9781461286929 |c Print |9 978-1-4612-8692-9 | ||
024 | 7 | |a 10.1007/978-1-4612-4190-4 |2 doi | |
035 | |a (OCoLC)863808816 | ||
035 | |a (DE-599)BVBBV042420240 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kechris, Alexander S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Classical Descriptive Set Theory |c by Alexander S. Kechris |
264 | 1 | |a New York, NY |b Springer New York |c 1995 | |
300 | |a 1 Online-Ressource (XVIII, 404 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 156 |x 0072-5285 | |
500 | |a Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text attempts to present a largely balanced approach, which combines many elements of the different traditions of the subject. It includes a wide variety of examples, exercises (over 400), and applications, in order to illustrate the general concepts and results of the theory. This text provides a first basic course in classical descriptive set theory and covers material with which mathematicians interested in the subject for its own sake or those that wish to use it in their field should be familiar. Over the years, researchers in diverse areas of mathematics, such as logic and set theory, analysis, topology, probability theory, etc., have brought to the subject of descriptive set theory their own intuitions, concepts, terminology and notation | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Topology | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Deskriptive Mengenlehre |0 (DE-588)4149180-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deskriptive Mengenlehre |0 (DE-588)4149180-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4190-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855657 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091919970304 |
---|---|
any_adam_object | |
author | Kechris, Alexander S. |
author_facet | Kechris, Alexander S. |
author_role | aut |
author_sort | Kechris, Alexander S. |
author_variant | a s k as ask |
building | Verbundindex |
bvnumber | BV042420240 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863808816 (DE-599)BVBBV042420240 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4190-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02459nmm a2200469zcb4500</leader><controlfield tag="001">BV042420240</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461241904</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4190-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461286929</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8692-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4190-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863808816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420240</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kechris, Alexander S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical Descriptive Set Theory</subfield><subfield code="c">by Alexander S. Kechris</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 404 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">156</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text attempts to present a largely balanced approach, which combines many elements of the different traditions of the subject. It includes a wide variety of examples, exercises (over 400), and applications, in order to illustrate the general concepts and results of the theory. This text provides a first basic course in classical descriptive set theory and covers material with which mathematicians interested in the subject for its own sake or those that wish to use it in their field should be familiar. Over the years, researchers in diverse areas of mathematics, such as logic and set theory, analysis, topology, probability theory, etc., have brought to the subject of descriptive set theory their own intuitions, concepts, terminology and notation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deskriptive Mengenlehre</subfield><subfield code="0">(DE-588)4149180-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deskriptive Mengenlehre</subfield><subfield code="0">(DE-588)4149180-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4190-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855657</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420240 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461241904 9781461286929 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855657 |
oclc_num | 863808816 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 404 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Kechris, Alexander S. Verfasser aut Classical Descriptive Set Theory by Alexander S. Kechris New York, NY Springer New York 1995 1 Online-Ressource (XVIII, 404 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 156 0072-5285 Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text attempts to present a largely balanced approach, which combines many elements of the different traditions of the subject. It includes a wide variety of examples, exercises (over 400), and applications, in order to illustrate the general concepts and results of the theory. This text provides a first basic course in classical descriptive set theory and covers material with which mathematicians interested in the subject for its own sake or those that wish to use it in their field should be familiar. Over the years, researchers in diverse areas of mathematics, such as logic and set theory, analysis, topology, probability theory, etc., have brought to the subject of descriptive set theory their own intuitions, concepts, terminology and notation Mathematics Logic, Symbolic and mathematical Topology Mathematical Logic and Foundations Mathematik Deskriptive Mengenlehre (DE-588)4149180-4 gnd rswk-swf Deskriptive Mengenlehre (DE-588)4149180-4 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-4190-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kechris, Alexander S. Classical Descriptive Set Theory Mathematics Logic, Symbolic and mathematical Topology Mathematical Logic and Foundations Mathematik Deskriptive Mengenlehre (DE-588)4149180-4 gnd |
subject_GND | (DE-588)4149180-4 |
title | Classical Descriptive Set Theory |
title_auth | Classical Descriptive Set Theory |
title_exact_search | Classical Descriptive Set Theory |
title_full | Classical Descriptive Set Theory by Alexander S. Kechris |
title_fullStr | Classical Descriptive Set Theory by Alexander S. Kechris |
title_full_unstemmed | Classical Descriptive Set Theory by Alexander S. Kechris |
title_short | Classical Descriptive Set Theory |
title_sort | classical descriptive set theory |
topic | Mathematics Logic, Symbolic and mathematical Topology Mathematical Logic and Foundations Mathematik Deskriptive Mengenlehre (DE-588)4149180-4 gnd |
topic_facet | Mathematics Logic, Symbolic and mathematical Topology Mathematical Logic and Foundations Mathematik Deskriptive Mengenlehre |
url | https://doi.org/10.1007/978-1-4612-4190-4 |
work_keys_str_mv | AT kechrisalexanders classicaldescriptivesettheory |