Minimax Theorems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1996
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
24 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Many boundary value problems are equivalent to Au=O (1) where A : X ---+ Y is a mapping between two Banach spaces. When the problem is variational, there exists a differentiable functional <p : X ---+ lR such that A = <p', i. e. -1' <p(u + tv) - O t The space Y corresponds then to the topological dual X' of X and equation (1) is equivalent to <p'(u) = 0, i. e. (2) (<p'(u), v) = 0, Vv E X. A critical point of <p is a solution u of (2) and the value of <p at u is a critical value of <po How to find critical values? When <p is bounded from below, the infimum c := inf <p x is a natural candidate. Ekeland's variational principle implies the existence of a sequence (un) such that Such a sequence is called a Palais-Smale sequence at level C. The functional <p satisfies the (PS)c condition if any Palais-Smale sequence at level c has a convergent subsequence. If <p is bounded from below and satisfies the (PS)c condition at level c := infx <p, then c is a critical value of <po Following Ambrosetti and Rabinowitz, we consider now the case when 0 and e E X such that lIell > rand inf |
Beschreibung: | 1 Online-Ressource (X, 165 p) |
ISBN: | 9781461241461 9781461286738 |
DOI: | 10.1007/978-1-4612-4146-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420230 | ||
003 | DE-604 | ||
005 | 20210526 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461241461 |c Online |9 978-1-4612-4146-1 | ||
020 | |a 9781461286738 |c Print |9 978-1-4612-8673-8 | ||
024 | 7 | |a 10.1007/978-1-4612-4146-1 |2 doi | |
035 | |a (OCoLC)1165511843 | ||
035 | |a (DE-599)BVBBV042420230 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Willem, Michel |e Verfasser |4 aut | |
245 | 1 | 0 | |a Minimax Theorems |c by Michel Willem |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1996 | |
300 | |a 1 Online-Ressource (X, 165 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Nonlinear Differential Equations and Their Applications |v 24 | |
500 | |a Many boundary value problems are equivalent to Au=O (1) where A : X ---+ Y is a mapping between two Banach spaces. When the problem is variational, there exists a differentiable functional <p : X ---+ lR such that A = <p', i. e. -1' <p(u + tv) - O t The space Y corresponds then to the topological dual X' of X and equation (1) is equivalent to <p'(u) = 0, i. e. (2) (<p'(u), v) = 0, Vv E X. A critical point of <p is a solution u of (2) and the value of <p at u is a critical value of <po How to find critical values? When <p is bounded from below, the infimum c := inf <p x is a natural candidate. Ekeland's variational principle implies the existence of a sequence (un) such that Such a sequence is called a Palais-Smale sequence at level C. The functional <p satisfies the (PS)c condition if any Palais-Smale sequence at level c has a convergent subsequence. If <p is bounded from below and satisfies the (PS)c condition at level c := infx <p, then c is a critical value of <po Following Ambrosetti and Rabinowitz, we consider now the case when 0 and e E X such that lIell > rand inf | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Game Theory, Economics, Social and Behav. Sciences | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Minimax-Theorem |0 (DE-588)4135131-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Minimax-Theorem |0 (DE-588)4135131-9 |D s |
689 | 0 | 1 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 24 |w (DE-604)BV036582883 |9 24 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4146-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855647 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091907387392 |
---|---|
any_adam_object | |
author | Willem, Michel |
author_facet | Willem, Michel |
author_role | aut |
author_sort | Willem, Michel |
author_variant | m w mw |
building | Verbundindex |
bvnumber | BV042420230 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165511843 (DE-599)BVBBV042420230 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4146-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02910nmm a2200493zcb4500</leader><controlfield tag="001">BV042420230</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210526 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461241461</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4146-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461286738</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8673-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4146-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165511843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420230</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Willem, Michel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimax Theorems</subfield><subfield code="c">by Michel Willem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 165 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">24</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Many boundary value problems are equivalent to Au=O (1) where A : X ---+ Y is a mapping between two Banach spaces. When the problem is variational, there exists a differentiable functional <p : X ---+ lR such that A = <p', i. e. -1' <p(u + tv) - O t The space Y corresponds then to the topological dual X' of X and equation (1) is equivalent to <p'(u) = 0, i. e. (2) (<p'(u), v) = 0, Vv E X. A critical point of <p is a solution u of (2) and the value of <p at u is a critical value of <po How to find critical values? When <p is bounded from below, the infimum c := inf <p x is a natural candidate. Ekeland's variational principle implies the existence of a sequence (un) such that Such a sequence is called a Palais-Smale sequence at level C. The functional <p satisfies the (PS)c condition if any Palais-Smale sequence at level c has a convergent subsequence. If <p is bounded from below and satisfies the (PS)c condition at level c := infx <p, then c is a critical value of <po Following Ambrosetti and Rabinowitz, we consider now the case when 0 and e E X such that lIell > rand inf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game Theory, Economics, Social and Behav. Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimax-Theorem</subfield><subfield code="0">(DE-588)4135131-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Minimax-Theorem</subfield><subfield code="0">(DE-588)4135131-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">24</subfield><subfield code="w">(DE-604)BV036582883</subfield><subfield code="9">24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4146-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855647</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420230 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461241461 9781461286738 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855647 |
oclc_num | 1165511843 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 165 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Nonlinear Differential Equations and Their Applications |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Willem, Michel Verfasser aut Minimax Theorems by Michel Willem Boston, MA Birkhäuser Boston 1996 1 Online-Ressource (X, 165 p) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 24 Many boundary value problems are equivalent to Au=O (1) where A : X ---+ Y is a mapping between two Banach spaces. When the problem is variational, there exists a differentiable functional <p : X ---+ lR such that A = <p', i. e. -1' <p(u + tv) - O t The space Y corresponds then to the topological dual X' of X and equation (1) is equivalent to <p'(u) = 0, i. e. (2) (<p'(u), v) = 0, Vv E X. A critical point of <p is a solution u of (2) and the value of <p at u is a critical value of <po How to find critical values? When <p is bounded from below, the infimum c := inf <p x is a natural candidate. Ekeland's variational principle implies the existence of a sequence (un) such that Such a sequence is called a Palais-Smale sequence at level C. The functional <p satisfies the (PS)c condition if any Palais-Smale sequence at level c has a convergent subsequence. If <p is bounded from below and satisfies the (PS)c condition at level c := infx <p, then c is a critical value of <po Following Ambrosetti and Rabinowitz, we consider now the case when 0 and e E X such that lIell > rand inf Mathematics Applications of Mathematics Game Theory, Economics, Social and Behav. Sciences Mathematik Minimax-Theorem (DE-588)4135131-9 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Minimax-Theorem (DE-588)4135131-9 s Partielle Differentialgleichung (DE-588)4044779-0 s 1\p DE-604 Progress in Nonlinear Differential Equations and Their Applications 24 (DE-604)BV036582883 24 https://doi.org/10.1007/978-1-4612-4146-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Willem, Michel Minimax Theorems Progress in Nonlinear Differential Equations and Their Applications Mathematics Applications of Mathematics Game Theory, Economics, Social and Behav. Sciences Mathematik Minimax-Theorem (DE-588)4135131-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4135131-9 (DE-588)4044779-0 |
title | Minimax Theorems |
title_auth | Minimax Theorems |
title_exact_search | Minimax Theorems |
title_full | Minimax Theorems by Michel Willem |
title_fullStr | Minimax Theorems by Michel Willem |
title_full_unstemmed | Minimax Theorems by Michel Willem |
title_short | Minimax Theorems |
title_sort | minimax theorems |
topic | Mathematics Applications of Mathematics Game Theory, Economics, Social and Behav. Sciences Mathematik Minimax-Theorem (DE-588)4135131-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Applications of Mathematics Game Theory, Economics, Social and Behav. Sciences Mathematik Minimax-Theorem Partielle Differentialgleichung |
url | https://doi.org/10.1007/978-1-4612-4146-1 |
volume_link | (DE-604)BV036582883 |
work_keys_str_mv | AT willemmichel minimaxtheorems |