Fractional Analysis: Methods of Motion Decomposition
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1997
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book considers methods of approximate analysis of mechanical, electromechanical, and other systems described by ordinary differential equations. Modern mathematical modeling of sophisticated mechanical systems consists of several stages: first, construction of a mechanical model, and then writing appropriate equations and their analytical or numerical examination. Usually, this procedure is repeated several times. Even if an initial model correctly reflects the main properties of a phenomenon, it describes, as a rule, many unnecessary details that make equations of motion too complicated. As experience and experimental data are accumulated, the researcher considers simpler models and simplifies the equations. Thus some terms are discarded, the order of the equations is lowered, and so on. This process requires time, experimentation, and the researcher's intuition. A good example of such a semi-experimental way of simplifying is a gyroscopic precession equation. Formal mathematical proofs of its admissibility appeared some several decades after its successful introduction in engineering calculations. Applied mathematics now has at its disposal many methods of approximate analysis of differential equations. Application of these methods could shorten and formalize the procedure of simplifying the equations and, thus, of constructing approximate motion models. Wide application of the methods into practice is hindered by the following. 1. Descriptions of various approximate methods are scattered over the mathematical literature. The researcher, as a rule, does not know what method is most suitable for a specific case. 2 |
Beschreibung: | 1 Online-Ressource (X, 232 p) |
ISBN: | 9781461241300 9781461286677 |
DOI: | 10.1007/978-1-4612-4130-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420224 | ||
003 | DE-604 | ||
005 | 20180115 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781461241300 |c Online |9 978-1-4612-4130-0 | ||
020 | |a 9781461286677 |c Print |9 978-1-4612-8667-7 | ||
024 | 7 | |a 10.1007/978-1-4612-4130-0 |2 doi | |
035 | |a (OCoLC)906699406 | ||
035 | |a (DE-599)BVBBV042420224 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.2433 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Novozhilov, Igor V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fractional Analysis |b Methods of Motion Decomposition |c by Igor V. Novozhilov |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1997 | |
300 | |a 1 Online-Ressource (X, 232 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This book considers methods of approximate analysis of mechanical, electromechanical, and other systems described by ordinary differential equations. Modern mathematical modeling of sophisticated mechanical systems consists of several stages: first, construction of a mechanical model, and then writing appropriate equations and their analytical or numerical examination. Usually, this procedure is repeated several times. Even if an initial model correctly reflects the main properties of a phenomenon, it describes, as a rule, many unnecessary details that make equations of motion too complicated. As experience and experimental data are accumulated, the researcher considers simpler models and simplifies the equations. Thus some terms are discarded, the order of the equations is lowered, and so on. This process requires time, experimentation, and the researcher's intuition. A good example of such a semi-experimental way of simplifying is a gyroscopic precession equation. Formal mathematical proofs of its admissibility appeared some several decades after its successful introduction in engineering calculations. Applied mathematics now has at its disposal many methods of approximate analysis of differential equations. Application of these methods could shorten and formalize the procedure of simplifying the equations and, thus, of constructing approximate motion models. Wide application of the methods into practice is hindered by the following. 1. Descriptions of various approximate methods are scattered over the mathematical literature. The researcher, as a rule, does not know what method is most suitable for a specific case. 2 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Langstreckenlauf |0 (DE-588)4034542-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Psychische Vorbereitung |0 (DE-588)4176194-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 0 | 1 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Langstreckenlauf |0 (DE-588)4034542-7 |D s |
689 | 1 | 1 | |a Psychische Vorbereitung |0 (DE-588)4176194-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4130-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855641 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091897950208 |
---|---|
any_adam_object | |
author | Novozhilov, Igor V. |
author_facet | Novozhilov, Igor V. |
author_role | aut |
author_sort | Novozhilov, Igor V. |
author_variant | i v n iv ivn |
building | Verbundindex |
bvnumber | BV042420224 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)906699406 (DE-599)BVBBV042420224 |
dewey-full | 515.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2433 |
dewey-search | 515.2433 |
dewey-sort | 3515.2433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4130-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03990nmm a2200637zc 4500</leader><controlfield tag="001">BV042420224</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180115 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461241300</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4130-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461286677</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8667-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4130-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)906699406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.2433</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Novozhilov, Igor V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractional Analysis</subfield><subfield code="b">Methods of Motion Decomposition</subfield><subfield code="c">by Igor V. Novozhilov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 232 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book considers methods of approximate analysis of mechanical, electromechanical, and other systems described by ordinary differential equations. Modern mathematical modeling of sophisticated mechanical systems consists of several stages: first, construction of a mechanical model, and then writing appropriate equations and their analytical or numerical examination. Usually, this procedure is repeated several times. Even if an initial model correctly reflects the main properties of a phenomenon, it describes, as a rule, many unnecessary details that make equations of motion too complicated. As experience and experimental data are accumulated, the researcher considers simpler models and simplifies the equations. Thus some terms are discarded, the order of the equations is lowered, and so on. This process requires time, experimentation, and the researcher's intuition. A good example of such a semi-experimental way of simplifying is a gyroscopic precession equation. Formal mathematical proofs of its admissibility appeared some several decades after its successful introduction in engineering calculations. Applied mathematics now has at its disposal many methods of approximate analysis of differential equations. Application of these methods could shorten and formalize the procedure of simplifying the equations and, thus, of constructing approximate motion models. Wide application of the methods into practice is hindered by the following. 1. Descriptions of various approximate methods are scattered over the mathematical literature. The researcher, as a rule, does not know what method is most suitable for a specific case. 2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Langstreckenlauf</subfield><subfield code="0">(DE-588)4034542-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Psychische Vorbereitung</subfield><subfield code="0">(DE-588)4176194-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Langstreckenlauf</subfield><subfield code="0">(DE-588)4034542-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Psychische Vorbereitung</subfield><subfield code="0">(DE-588)4176194-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4130-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855641</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420224 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461241300 9781461286677 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855641 |
oclc_num | 906699406 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 232 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Novozhilov, Igor V. Verfasser aut Fractional Analysis Methods of Motion Decomposition by Igor V. Novozhilov Boston, MA Birkhäuser Boston 1997 1 Online-Ressource (X, 232 p) txt rdacontent c rdamedia cr rdacarrier This book considers methods of approximate analysis of mechanical, electromechanical, and other systems described by ordinary differential equations. Modern mathematical modeling of sophisticated mechanical systems consists of several stages: first, construction of a mechanical model, and then writing appropriate equations and their analytical or numerical examination. Usually, this procedure is repeated several times. Even if an initial model correctly reflects the main properties of a phenomenon, it describes, as a rule, many unnecessary details that make equations of motion too complicated. As experience and experimental data are accumulated, the researcher considers simpler models and simplifies the equations. Thus some terms are discarded, the order of the equations is lowered, and so on. This process requires time, experimentation, and the researcher's intuition. A good example of such a semi-experimental way of simplifying is a gyroscopic precession equation. Formal mathematical proofs of its admissibility appeared some several decades after its successful introduction in engineering calculations. Applied mathematics now has at its disposal many methods of approximate analysis of differential equations. Application of these methods could shorten and formalize the procedure of simplifying the equations and, thus, of constructing approximate motion models. Wide application of the methods into practice is hindered by the following. 1. Descriptions of various approximate methods are scattered over the mathematical literature. The researcher, as a rule, does not know what method is most suitable for a specific case. 2 Mathematics Fourier analysis Functions of complex variables Integral Transforms Mathematical physics Fourier Analysis Mathematical Methods in Physics Real Functions Integral Transforms, Operational Calculus Functions of a Complex Variable Mathematik Mathematische Physik Approximation (DE-588)4002498-2 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Langstreckenlauf (DE-588)4034542-7 gnd rswk-swf Psychische Vorbereitung (DE-588)4176194-7 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 s Approximation (DE-588)4002498-2 s 1\p DE-604 Langstreckenlauf (DE-588)4034542-7 s Psychische Vorbereitung (DE-588)4176194-7 s 2\p DE-604 https://doi.org/10.1007/978-1-4612-4130-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Novozhilov, Igor V. Fractional Analysis Methods of Motion Decomposition Mathematics Fourier analysis Functions of complex variables Integral Transforms Mathematical physics Fourier Analysis Mathematical Methods in Physics Real Functions Integral Transforms, Operational Calculus Functions of a Complex Variable Mathematik Mathematische Physik Approximation (DE-588)4002498-2 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Langstreckenlauf (DE-588)4034542-7 gnd Psychische Vorbereitung (DE-588)4176194-7 gnd |
subject_GND | (DE-588)4002498-2 (DE-588)4020929-5 (DE-588)4034542-7 (DE-588)4176194-7 |
title | Fractional Analysis Methods of Motion Decomposition |
title_auth | Fractional Analysis Methods of Motion Decomposition |
title_exact_search | Fractional Analysis Methods of Motion Decomposition |
title_full | Fractional Analysis Methods of Motion Decomposition by Igor V. Novozhilov |
title_fullStr | Fractional Analysis Methods of Motion Decomposition by Igor V. Novozhilov |
title_full_unstemmed | Fractional Analysis Methods of Motion Decomposition by Igor V. Novozhilov |
title_short | Fractional Analysis |
title_sort | fractional analysis methods of motion decomposition |
title_sub | Methods of Motion Decomposition |
topic | Mathematics Fourier analysis Functions of complex variables Integral Transforms Mathematical physics Fourier Analysis Mathematical Methods in Physics Real Functions Integral Transforms, Operational Calculus Functions of a Complex Variable Mathematik Mathematische Physik Approximation (DE-588)4002498-2 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Langstreckenlauf (DE-588)4034542-7 gnd Psychische Vorbereitung (DE-588)4176194-7 gnd |
topic_facet | Mathematics Fourier analysis Functions of complex variables Integral Transforms Mathematical physics Fourier Analysis Mathematical Methods in Physics Real Functions Integral Transforms, Operational Calculus Functions of a Complex Variable Mathematik Mathematische Physik Approximation Gewöhnliche Differentialgleichung Langstreckenlauf Psychische Vorbereitung |
url | https://doi.org/10.1007/978-1-4612-4130-0 |
work_keys_str_mv | AT novozhilovigorv fractionalanalysismethodsofmotiondecomposition |