Models of Phase Transitions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1996
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
28 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | ... "What do you call work?" "Why ain't that work?" Tom resumed his whitewashing, and answered carelessly: "Well. lI1a),he it is, and maybe it aill't. All I know, is, it suits Tom Sawvc/:" "Oil CO/lll!, IIOW, Will do not mean to let 011 that you like it?" The brush continued to move. "Likc it? Well, I do not see wlzy I oughtn't to like it. Does a hoy get a chance to whitewash a fence every day?" That put the thing ill a Ilew light. Ben stopped nibhling the apple .... (From Mark Twain's Adventures of Tom Sawyer, Chapter II.) Mathematics can put quantitative phenomena in a new light; in turn applications may provide a vivid support for mathematical concepts. This volume illustrates some aspects of the mathematical treatment of phase transitions, namely, the classical Stefan problem and its generalizations. The in tended reader is a researcher in application-oriented mathematics. An effort has been made to make a part of the book accessible to beginners, as well as physicists and engineers with a mathematical background. Some room has also been devoted to illustrate analytical tools. This volume deals with research I initiated when I was affiliated with the Istituto di Analisi Numerica del C.N.R. in Pavia, and then continued at the Dipartimento di Matematica dell'Universita di Trento. It was typeset by the author in plain TEX. |
Beschreibung: | 1 Online-Ressource (X, 326 p) |
ISBN: | 9781461240785 9781461286417 |
DOI: | 10.1007/978-1-4612-4078-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420208 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461240785 |c Online |9 978-1-4612-4078-5 | ||
020 | |a 9781461286417 |c Print |9 978-1-4612-8641-7 | ||
024 | 7 | |a 10.1007/978-1-4612-4078-5 |2 doi | |
035 | |a (OCoLC)1165546634 | ||
035 | |a (DE-599)BVBBV042420208 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Visintin, Augusto |e Verfasser |4 aut | |
245 | 1 | 0 | |a Models of Phase Transitions |c by Augusto Visintin |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1996 | |
300 | |a 1 Online-Ressource (X, 326 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 28 | |
500 | |a ... "What do you call work?" "Why ain't that work?" Tom resumed his whitewashing, and answered carelessly: "Well. lI1a),he it is, and maybe it aill't. All I know, is, it suits Tom Sawvc/:" "Oil CO/lll!, IIOW, Will do not mean to let 011 that you like it?" The brush continued to move. "Likc it? Well, I do not see wlzy I oughtn't to like it. Does a hoy get a chance to whitewash a fence every day?" That put the thing ill a Ilew light. Ben stopped nibhling the apple .... (From Mark Twain's Adventures of Tom Sawyer, Chapter II.) Mathematics can put quantitative phenomena in a new light; in turn applications may provide a vivid support for mathematical concepts. This volume illustrates some aspects of the mathematical treatment of phase transitions, namely, the classical Stefan problem and its generalizations. The in tended reader is a researcher in application-oriented mathematics. An effort has been made to make a part of the book accessible to beginners, as well as physicists and engineers with a mathematical background. Some room has also been devoted to illustrate analytical tools. This volume deals with research I initiated when I was affiliated with the Istituto di Analisi Numerica del C.N.R. in Pavia, and then continued at the Dipartimento di Matematica dell'Universita di Trento. It was typeset by the author in plain TEX. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Phasenumwandlung |0 (DE-588)4132140-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Phasenumwandlung |0 (DE-588)4132140-6 |D s |
689 | 0 | 1 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4078-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855625 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091854958592 |
---|---|
any_adam_object | |
author | Visintin, Augusto |
author_facet | Visintin, Augusto |
author_role | aut |
author_sort | Visintin, Augusto |
author_variant | a v av |
building | Verbundindex |
bvnumber | BV042420208 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165546634 (DE-599)BVBBV042420208 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4078-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03256nmm a2200529zcb4500</leader><controlfield tag="001">BV042420208</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461240785</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4078-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461286417</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8641-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4078-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165546634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420208</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Visintin, Augusto</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Models of Phase Transitions</subfield><subfield code="c">by Augusto Visintin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 326 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">28</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">... "What do you call work?" "Why ain't that work?" Tom resumed his whitewashing, and answered carelessly: "Well. lI1a),he it is, and maybe it aill't. All I know, is, it suits Tom Sawvc/:" "Oil CO/lll!, IIOW, Will do not mean to let 011 that you like it?" The brush continued to move. "Likc it? Well, I do not see wlzy I oughtn't to like it. Does a hoy get a chance to whitewash a fence every day?" That put the thing ill a Ilew light. Ben stopped nibhling the apple .... (From Mark Twain's Adventures of Tom Sawyer, Chapter II.) Mathematics can put quantitative phenomena in a new light; in turn applications may provide a vivid support for mathematical concepts. This volume illustrates some aspects of the mathematical treatment of phase transitions, namely, the classical Stefan problem and its generalizations. The in tended reader is a researcher in application-oriented mathematics. An effort has been made to make a part of the book accessible to beginners, as well as physicists and engineers with a mathematical background. Some room has also been devoted to illustrate analytical tools. This volume deals with research I initiated when I was affiliated with the Istituto di Analisi Numerica del C.N.R. in Pavia, and then continued at the Dipartimento di Matematica dell'Universita di Trento. It was typeset by the author in plain TEX.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4078-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855625</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420208 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461240785 9781461286417 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855625 |
oclc_num | 1165546634 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 326 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Visintin, Augusto Verfasser aut Models of Phase Transitions by Augusto Visintin Boston, MA Birkhäuser Boston 1996 1 Online-Ressource (X, 326 p) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 28 ... "What do you call work?" "Why ain't that work?" Tom resumed his whitewashing, and answered carelessly: "Well. lI1a),he it is, and maybe it aill't. All I know, is, it suits Tom Sawvc/:" "Oil CO/lll!, IIOW, Will do not mean to let 011 that you like it?" The brush continued to move. "Likc it? Well, I do not see wlzy I oughtn't to like it. Does a hoy get a chance to whitewash a fence every day?" That put the thing ill a Ilew light. Ben stopped nibhling the apple .... (From Mark Twain's Adventures of Tom Sawyer, Chapter II.) Mathematics can put quantitative phenomena in a new light; in turn applications may provide a vivid support for mathematical concepts. This volume illustrates some aspects of the mathematical treatment of phase transitions, namely, the classical Stefan problem and its generalizations. The in tended reader is a researcher in application-oriented mathematics. An effort has been made to make a part of the book accessible to beginners, as well as physicists and engineers with a mathematical background. Some room has also been devoted to illustrate analytical tools. This volume deals with research I initiated when I was affiliated with the Istituto di Analisi Numerica del C.N.R. in Pavia, and then continued at the Dipartimento di Matematica dell'Universita di Trento. It was typeset by the author in plain TEX. Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Mathematik Mathematische Physik Phasenumwandlung (DE-588)4132140-6 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Phasenumwandlung (DE-588)4132140-6 s Partielle Differentialgleichung (DE-588)4044779-0 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-4078-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Visintin, Augusto Models of Phase Transitions Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Mathematik Mathematische Physik Phasenumwandlung (DE-588)4132140-6 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4132140-6 (DE-588)4044779-0 |
title | Models of Phase Transitions |
title_auth | Models of Phase Transitions |
title_exact_search | Models of Phase Transitions |
title_full | Models of Phase Transitions by Augusto Visintin |
title_fullStr | Models of Phase Transitions by Augusto Visintin |
title_full_unstemmed | Models of Phase Transitions by Augusto Visintin |
title_short | Models of Phase Transitions |
title_sort | models of phase transitions |
topic | Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Mathematik Mathematische Physik Phasenumwandlung (DE-588)4132140-6 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Mathematik Mathematische Physik Phasenumwandlung Partielle Differentialgleichung |
url | https://doi.org/10.1007/978-1-4612-4078-5 |
work_keys_str_mv | AT visintinaugusto modelsofphasetransitions |