Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1996
|
Ausgabe: | Third Edition |
Schriftenreihe: | Springer Series in Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book provides a unified introduction to a variety of computational algorithms for Bayesian and likelihood inference. In this third edition, I have attempted to expand the treatment of many of the techniques discussed. I have added some new examples, as well as included recent results. Exercises have been added at the end of each chapter. Prerequisites for this book include an understanding of mathematical statistics at the level of Bickel and Doksum (1977), some understanding of the Bayesian approach as in Box and Tiao (1973), some exposure to statistical models as found in McCullagh and Neider (1989), and for Section 6. 6 some experience with conditional inference at the level of Cox and Snell (1989). I have chosen not to present proofs of convergence or rates of convergence for the Metropolis algorithm or the Gibbs sampler since these may require substantial background in Markov chain theory that is beyond the scope of this book. However, references to these proofs are given. There has been an explosion of papers in the area of Markov chain Monte Carlo in the past ten years. I have attempted to identify key references- though due to the volatility of the field some work may have been missed |
Beschreibung: | 1 Online-Ressource (VIII, 208 p) |
ISBN: | 9781461240242 9781461284710 |
ISSN: | 0172-7397 |
DOI: | 10.1007/978-1-4612-4024-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420190 | ||
003 | DE-604 | ||
005 | 20180205 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461240242 |c Online |9 978-1-4612-4024-2 | ||
020 | |a 9781461284710 |c Print |9 978-1-4612-8471-0 | ||
024 | 7 | |a 10.1007/978-1-4612-4024-2 |2 doi | |
035 | |a (OCoLC)1165547529 | ||
035 | |a (DE-599)BVBBV042420190 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Tanner, Martin A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Tools for Statistical Inference |b Methods for the Exploration of Posterior Distributions and Likelihood Functions |c by Martin A. Tanner |
250 | |a Third Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 1996 | |
300 | |a 1 Online-Ressource (VIII, 208 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Statistics |x 0172-7397 | |
500 | |a This book provides a unified introduction to a variety of computational algorithms for Bayesian and likelihood inference. In this third edition, I have attempted to expand the treatment of many of the techniques discussed. I have added some new examples, as well as included recent results. Exercises have been added at the end of each chapter. Prerequisites for this book include an understanding of mathematical statistics at the level of Bickel and Doksum (1977), some understanding of the Bayesian approach as in Box and Tiao (1973), some exposure to statistical models as found in McCullagh and Neider (1989), and for Section 6. 6 some experience with conditional inference at the level of Cox and Snell (1989). I have chosen not to present proofs of convergence or rates of convergence for the Metropolis algorithm or the Gibbs sampler since these may require substantial background in Markov chain theory that is beyond the scope of this book. However, references to these proofs are given. There has been an explosion of papers in the area of Markov chain Monte Carlo in the past ten years. I have attempted to identify key references- though due to the volatility of the field some work may have been missed | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsverteilung |0 (DE-588)4121894-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inferenzstatistik |0 (DE-588)4247120-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unvollkommene Information |0 (DE-588)4140474-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitsverteilung |0 (DE-588)4121894-2 |D s |
689 | 0 | 1 | |a Inferenzstatistik |0 (DE-588)4247120-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Unvollkommene Information |0 (DE-588)4140474-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4024-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855607 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091800432640 |
---|---|
any_adam_object | |
author | Tanner, Martin A. |
author_facet | Tanner, Martin A. |
author_role | aut |
author_sort | Tanner, Martin A. |
author_variant | m a t ma mat |
building | Verbundindex |
bvnumber | BV042420190 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165547529 (DE-599)BVBBV042420190 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4024-2 |
edition | Third Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03914nmm a2200673zc 4500</leader><controlfield tag="001">BV042420190</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461240242</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4024-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461284710</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8471-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4024-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165547529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420190</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tanner, Martin A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tools for Statistical Inference</subfield><subfield code="b">Methods for the Exploration of Posterior Distributions and Likelihood Functions</subfield><subfield code="c">by Martin A. Tanner</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 208 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Statistics</subfield><subfield code="x">0172-7397</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides a unified introduction to a variety of computational algorithms for Bayesian and likelihood inference. In this third edition, I have attempted to expand the treatment of many of the techniques discussed. I have added some new examples, as well as included recent results. Exercises have been added at the end of each chapter. Prerequisites for this book include an understanding of mathematical statistics at the level of Bickel and Doksum (1977), some understanding of the Bayesian approach as in Box and Tiao (1973), some exposure to statistical models as found in McCullagh and Neider (1989), and for Section 6. 6 some experience with conditional inference at the level of Cox and Snell (1989). I have chosen not to present proofs of convergence or rates of convergence for the Metropolis algorithm or the Gibbs sampler since these may require substantial background in Markov chain theory that is beyond the scope of this book. However, references to these proofs are given. There has been an explosion of papers in the area of Markov chain Monte Carlo in the past ten years. I have attempted to identify key references- though due to the volatility of the field some work may have been missed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsverteilung</subfield><subfield code="0">(DE-588)4121894-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inferenzstatistik</subfield><subfield code="0">(DE-588)4247120-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unvollkommene Information</subfield><subfield code="0">(DE-588)4140474-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsverteilung</subfield><subfield code="0">(DE-588)4121894-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Inferenzstatistik</subfield><subfield code="0">(DE-588)4247120-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Unvollkommene Information</subfield><subfield code="0">(DE-588)4140474-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4024-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855607</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420190 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461240242 9781461284710 |
issn | 0172-7397 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855607 |
oclc_num | 1165547529 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 208 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Series in Statistics |
spelling | Tanner, Martin A. Verfasser aut Tools for Statistical Inference Methods for the Exploration of Posterior Distributions and Likelihood Functions by Martin A. Tanner Third Edition New York, NY Springer New York 1996 1 Online-Ressource (VIII, 208 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Statistics 0172-7397 This book provides a unified introduction to a variety of computational algorithms for Bayesian and likelihood inference. In this third edition, I have attempted to expand the treatment of many of the techniques discussed. I have added some new examples, as well as included recent results. Exercises have been added at the end of each chapter. Prerequisites for this book include an understanding of mathematical statistics at the level of Bickel and Doksum (1977), some understanding of the Bayesian approach as in Box and Tiao (1973), some exposure to statistical models as found in McCullagh and Neider (1989), and for Section 6. 6 some experience with conditional inference at the level of Cox and Snell (1989). I have chosen not to present proofs of convergence or rates of convergence for the Metropolis algorithm or the Gibbs sampler since these may require substantial background in Markov chain theory that is beyond the scope of this book. However, references to these proofs are given. There has been an explosion of papers in the area of Markov chain Monte Carlo in the past ten years. I have attempted to identify key references- though due to the volatility of the field some work may have been missed Statistics Statistics, general Statistik Statistische Schlussweise (DE-588)4182963-3 gnd rswk-swf Wahrscheinlichkeitsverteilung (DE-588)4121894-2 gnd rswk-swf Inferenzstatistik (DE-588)4247120-5 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Unvollkommene Information (DE-588)4140474-9 gnd rswk-swf Wahrscheinlichkeitsverteilung (DE-588)4121894-2 s Inferenzstatistik (DE-588)4247120-5 s 1\p DE-604 Statistische Schlussweise (DE-588)4182963-3 s 2\p DE-604 Unvollkommene Information (DE-588)4140474-9 s 3\p DE-604 Datenanalyse (DE-588)4123037-1 s 4\p DE-604 Statistik (DE-588)4056995-0 s 5\p DE-604 https://doi.org/10.1007/978-1-4612-4024-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tanner, Martin A. Tools for Statistical Inference Methods for the Exploration of Posterior Distributions and Likelihood Functions Statistics Statistics, general Statistik Statistische Schlussweise (DE-588)4182963-3 gnd Wahrscheinlichkeitsverteilung (DE-588)4121894-2 gnd Inferenzstatistik (DE-588)4247120-5 gnd Statistik (DE-588)4056995-0 gnd Datenanalyse (DE-588)4123037-1 gnd Unvollkommene Information (DE-588)4140474-9 gnd |
subject_GND | (DE-588)4182963-3 (DE-588)4121894-2 (DE-588)4247120-5 (DE-588)4056995-0 (DE-588)4123037-1 (DE-588)4140474-9 |
title | Tools for Statistical Inference Methods for the Exploration of Posterior Distributions and Likelihood Functions |
title_auth | Tools for Statistical Inference Methods for the Exploration of Posterior Distributions and Likelihood Functions |
title_exact_search | Tools for Statistical Inference Methods for the Exploration of Posterior Distributions and Likelihood Functions |
title_full | Tools for Statistical Inference Methods for the Exploration of Posterior Distributions and Likelihood Functions by Martin A. Tanner |
title_fullStr | Tools for Statistical Inference Methods for the Exploration of Posterior Distributions and Likelihood Functions by Martin A. Tanner |
title_full_unstemmed | Tools for Statistical Inference Methods for the Exploration of Posterior Distributions and Likelihood Functions by Martin A. Tanner |
title_short | Tools for Statistical Inference |
title_sort | tools for statistical inference methods for the exploration of posterior distributions and likelihood functions |
title_sub | Methods for the Exploration of Posterior Distributions and Likelihood Functions |
topic | Statistics Statistics, general Statistik Statistische Schlussweise (DE-588)4182963-3 gnd Wahrscheinlichkeitsverteilung (DE-588)4121894-2 gnd Inferenzstatistik (DE-588)4247120-5 gnd Statistik (DE-588)4056995-0 gnd Datenanalyse (DE-588)4123037-1 gnd Unvollkommene Information (DE-588)4140474-9 gnd |
topic_facet | Statistics Statistics, general Statistik Statistische Schlussweise Wahrscheinlichkeitsverteilung Inferenzstatistik Datenanalyse Unvollkommene Information |
url | https://doi.org/10.1007/978-1-4612-4024-2 |
work_keys_str_mv | AT tannermartina toolsforstatisticalinferencemethodsfortheexplorationofposteriordistributionsandlikelihoodfunctions |