Measures and Probabilities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1996
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Integration theory holds a prime position, whether in pure mathematics or in various fields of applied mathematics. It plays a central role in analysis; it is the basis of probability theory and provides an indispensable tool in mathematical physics, in particular in quantum mechanics and statistical mechanics. Therefore, many textbooks devoted to integration theory are already available. The present book by Michel Simonnet differs from the previous texts in many respects, and, for that reason, it is to be particularly recommended. When dealing with integration theory, some authors choose, as a starting point, the notion of a measure on a family of subsets of a set; this approach is especially well suited to applications in probability theory. Other authors prefer to start with the notion of Radon measure (a continuous linear functional on the space of continuous functions with compact support on a locally compact space) because it plays an important role in analysis and prepares for the study of distribution theory. Starting off with the notion of Daniell measure, Mr. Simonnet provides a unified treatment of these two approaches |
Beschreibung: | 1 Online-Ressource (510p) |
ISBN: | 9781461240129 9780387946443 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4612-4012-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420189 | ||
003 | DE-604 | ||
005 | 20171221 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461240129 |c Online |9 978-1-4612-4012-9 | ||
020 | |a 9780387946443 |c Print |9 978-0-387-94644-3 | ||
024 | 7 | |a 10.1007/978-1-4612-4012-9 |2 doi | |
035 | |a (OCoLC)863741550 | ||
035 | |a (DE-599)BVBBV042420189 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Simonnet, Michel |e Verfasser |4 aut | |
245 | 1 | 0 | |a Measures and Probabilities |c by Michel Simonnet |
264 | 1 | |a New York, NY |b Springer New York |c 1996 | |
300 | |a 1 Online-Ressource (510p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a Integration theory holds a prime position, whether in pure mathematics or in various fields of applied mathematics. It plays a central role in analysis; it is the basis of probability theory and provides an indispensable tool in mathematical physics, in particular in quantum mechanics and statistical mechanics. Therefore, many textbooks devoted to integration theory are already available. The present book by Michel Simonnet differs from the previous texts in many respects, and, for that reason, it is to be particularly recommended. When dealing with integration theory, some authors choose, as a starting point, the notion of a measure on a family of subsets of a set; this approach is especially well suited to applications in probability theory. Other authors prefer to start with the notion of Radon measure (a continuous linear functional on the space of continuous functions with compact support on a locally compact space) because it plays an important role in analysis and prepares for the study of distribution theory. Starting off with the notion of Daniell measure, Mr. Simonnet provides a unified treatment of these two approaches | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4012-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855606 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091796238336 |
---|---|
any_adam_object | |
author | Simonnet, Michel |
author_facet | Simonnet, Michel |
author_role | aut |
author_sort | Simonnet, Michel |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV042420189 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863741550 (DE-599)BVBBV042420189 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4012-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02660nmm a2200457zc 4500</leader><controlfield tag="001">BV042420189</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461240129</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4012-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387946443</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-94644-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4012-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863741550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420189</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simonnet, Michel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measures and Probabilities</subfield><subfield code="c">by Michel Simonnet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (510p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Integration theory holds a prime position, whether in pure mathematics or in various fields of applied mathematics. It plays a central role in analysis; it is the basis of probability theory and provides an indispensable tool in mathematical physics, in particular in quantum mechanics and statistical mechanics. Therefore, many textbooks devoted to integration theory are already available. The present book by Michel Simonnet differs from the previous texts in many respects, and, for that reason, it is to be particularly recommended. When dealing with integration theory, some authors choose, as a starting point, the notion of a measure on a family of subsets of a set; this approach is especially well suited to applications in probability theory. Other authors prefer to start with the notion of Radon measure (a continuous linear functional on the space of continuous functions with compact support on a locally compact space) because it plays an important role in analysis and prepares for the study of distribution theory. Starting off with the notion of Daniell measure, Mr. Simonnet provides a unified treatment of these two approaches</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4012-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855606</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420189 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461240129 9780387946443 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855606 |
oclc_num | 863741550 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (510p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Simonnet, Michel Verfasser aut Measures and Probabilities by Michel Simonnet New York, NY Springer New York 1996 1 Online-Ressource (510p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Integration theory holds a prime position, whether in pure mathematics or in various fields of applied mathematics. It plays a central role in analysis; it is the basis of probability theory and provides an indispensable tool in mathematical physics, in particular in quantum mechanics and statistical mechanics. Therefore, many textbooks devoted to integration theory are already available. The present book by Michel Simonnet differs from the previous texts in many respects, and, for that reason, it is to be particularly recommended. When dealing with integration theory, some authors choose, as a starting point, the notion of a measure on a family of subsets of a set; this approach is especially well suited to applications in probability theory. Other authors prefer to start with the notion of Radon measure (a continuous linear functional on the space of continuous functions with compact support on a locally compact space) because it plays an important role in analysis and prepares for the study of distribution theory. Starting off with the notion of Daniell measure, Mr. Simonnet provides a unified treatment of these two approaches Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Maßtheorie (DE-588)4074626-4 gnd rswk-swf Maßtheorie (DE-588)4074626-4 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-4012-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Simonnet, Michel Measures and Probabilities Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Maßtheorie (DE-588)4074626-4 gnd |
subject_GND | (DE-588)4074626-4 |
title | Measures and Probabilities |
title_auth | Measures and Probabilities |
title_exact_search | Measures and Probabilities |
title_full | Measures and Probabilities by Michel Simonnet |
title_fullStr | Measures and Probabilities by Michel Simonnet |
title_full_unstemmed | Measures and Probabilities by Michel Simonnet |
title_short | Measures and Probabilities |
title_sort | measures and probabilities |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Maßtheorie (DE-588)4074626-4 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Maßtheorie |
url | https://doi.org/10.1007/978-1-4612-4012-9 |
work_keys_str_mv | AT simonnetmichel measuresandprobabilities |