Boundary Value Problems of Finite Elasticity: Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1988
|
Schriftenreihe: | Springer Tracts in Natural Philosophy
31 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b], in order to obtain local existence and uniqueness for the traction problem in hyperelasticity under dead loads, inspired many of the ideas which led to this monograph. Chapter I aims to give a very brief introduction to some general concepts in the mathematical theory of elasticity, in order to show how the boundary value problems studied in the sequel arise. Chapter II is very technical; it supplies the framework for all sub sequent developments |
Beschreibung: | 1 Online-Ressource (XII, 191p) |
ISBN: | 9781461237365 9781461283263 |
ISSN: | 0081-3877 |
DOI: | 10.1007/978-1-4612-3736-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420161 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781461237365 |c Online |9 978-1-4612-3736-5 | ||
020 | |a 9781461283263 |c Print |9 978-1-4612-8326-3 | ||
024 | 7 | |a 10.1007/978-1-4612-3736-5 |2 doi | |
035 | |a (OCoLC)1184442635 | ||
035 | |a (DE-599)BVBBV042420161 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Valent, Tullio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Boundary Value Problems of Finite Elasticity |b Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data |c by Tullio Valent |
264 | 1 | |a New York, NY |b Springer New York |c 1988 | |
300 | |a 1 Online-Ressource (XII, 191p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Tracts in Natural Philosophy |v 31 |x 0081-3877 | |
500 | |a In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b], in order to obtain local existence and uniqueness for the traction problem in hyperelasticity under dead loads, inspired many of the ideas which led to this monograph. Chapter I aims to give a very brief introduction to some general concepts in the mathematical theory of elasticity, in order to show how the boundary value problems studied in the sequel arise. Chapter II is very technical; it supplies the framework for all sub sequent developments | ||
650 | 4 | |a Physics | |
650 | 4 | |a Chemistry / Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Materials | |
650 | 4 | |a Classical Continuum Physics | |
650 | 4 | |a Continuum Mechanics and Mechanics of Materials | |
650 | 4 | |a Math. Applications in Chemistry | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Analysis | |
650 | 4 | |a Chemie | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastizitätstheorie |0 (DE-588)4123124-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elastizitätstheorie |0 (DE-588)4123124-7 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-3736-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855578 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091738566656 |
---|---|
any_adam_object | |
author | Valent, Tullio |
author_facet | Valent, Tullio |
author_role | aut |
author_sort | Valent, Tullio |
author_variant | t v tv |
building | Verbundindex |
bvnumber | BV042420161 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184442635 (DE-599)BVBBV042420161 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4612-3736-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03588nmm a2200601zcb4500</leader><controlfield tag="001">BV042420161</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461237365</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-3736-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461283263</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8326-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3736-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184442635</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420161</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Valent, Tullio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boundary Value Problems of Finite Elasticity</subfield><subfield code="b">Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data</subfield><subfield code="c">by Tullio Valent</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 191p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Tracts in Natural Philosophy</subfield><subfield code="v">31</subfield><subfield code="x">0081-3877</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b], in order to obtain local existence and uniqueness for the traction problem in hyperelasticity under dead loads, inspired many of the ideas which led to this monograph. Chapter I aims to give a very brief introduction to some general concepts in the mathematical theory of elasticity, in order to show how the boundary value problems studied in the sequel arise. Chapter II is very technical; it supplies the framework for all sub sequent developments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical Continuum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Mechanics and Mechanics of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math. Applications in Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3736-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855578</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420161 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461237365 9781461283263 |
issn | 0081-3877 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855578 |
oclc_num | 1184442635 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 191p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Tracts in Natural Philosophy |
spelling | Valent, Tullio Verfasser aut Boundary Value Problems of Finite Elasticity Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data by Tullio Valent New York, NY Springer New York 1988 1 Online-Ressource (XII, 191p) txt rdacontent c rdamedia cr rdacarrier Springer Tracts in Natural Philosophy 31 0081-3877 In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b], in order to obtain local existence and uniqueness for the traction problem in hyperelasticity under dead loads, inspired many of the ideas which led to this monograph. Chapter I aims to give a very brief introduction to some general concepts in the mathematical theory of elasticity, in order to show how the boundary value problems studied in the sequel arise. Chapter II is very technical; it supplies the framework for all sub sequent developments Physics Chemistry / Mathematics Global analysis (Mathematics) Mechanics Engineering Materials Classical Continuum Physics Continuum Mechanics and Mechanics of Materials Math. Applications in Chemistry Computational Intelligence Analysis Chemie Ingenieurwissenschaften Mathematik Randwertproblem (DE-588)4048395-2 gnd rswk-swf Elastizitätstheorie (DE-588)4123124-7 gnd rswk-swf Elastizitätstheorie (DE-588)4123124-7 s Randwertproblem (DE-588)4048395-2 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-3736-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Valent, Tullio Boundary Value Problems of Finite Elasticity Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data Physics Chemistry / Mathematics Global analysis (Mathematics) Mechanics Engineering Materials Classical Continuum Physics Continuum Mechanics and Mechanics of Materials Math. Applications in Chemistry Computational Intelligence Analysis Chemie Ingenieurwissenschaften Mathematik Randwertproblem (DE-588)4048395-2 gnd Elastizitätstheorie (DE-588)4123124-7 gnd |
subject_GND | (DE-588)4048395-2 (DE-588)4123124-7 |
title | Boundary Value Problems of Finite Elasticity Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data |
title_auth | Boundary Value Problems of Finite Elasticity Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data |
title_exact_search | Boundary Value Problems of Finite Elasticity Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data |
title_full | Boundary Value Problems of Finite Elasticity Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data by Tullio Valent |
title_fullStr | Boundary Value Problems of Finite Elasticity Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data by Tullio Valent |
title_full_unstemmed | Boundary Value Problems of Finite Elasticity Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data by Tullio Valent |
title_short | Boundary Value Problems of Finite Elasticity |
title_sort | boundary value problems of finite elasticity local theorems on existence uniqueness and analytic dependence on data |
title_sub | Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data |
topic | Physics Chemistry / Mathematics Global analysis (Mathematics) Mechanics Engineering Materials Classical Continuum Physics Continuum Mechanics and Mechanics of Materials Math. Applications in Chemistry Computational Intelligence Analysis Chemie Ingenieurwissenschaften Mathematik Randwertproblem (DE-588)4048395-2 gnd Elastizitätstheorie (DE-588)4123124-7 gnd |
topic_facet | Physics Chemistry / Mathematics Global analysis (Mathematics) Mechanics Engineering Materials Classical Continuum Physics Continuum Mechanics and Mechanics of Materials Math. Applications in Chemistry Computational Intelligence Analysis Chemie Ingenieurwissenschaften Mathematik Randwertproblem Elastizitätstheorie |
url | https://doi.org/10.1007/978-1-4612-3736-5 |
work_keys_str_mv | AT valenttullio boundaryvalueproblemsoffiniteelasticitylocaltheoremsonexistenceuniquenessandanalyticdependenceondata |