Feasible Mathematics: A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1990
|
Schriftenreihe: | Progress in Computer Science and Applied Logic
9 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A so-called "effective" algorithm may require arbitrarily large finite amounts of time and space resources, and hence may not be practical in the real world. A "feasible" algorithm is one which only requires a limited amount of space and/or time for execution; the general idea is that a feasible algorithm is one which may be practical on today's or at least tomorrow's computers. There is no definitive analogue of Church's thesis giving a mathematical definition of feasibility; however, the most widely studied mathematical model of feasible computability is polynomial-time computability. Feasible Mathematics includes both the study of feasible computation from a mathematical and logical point of view and the reworking of traditional mathematics from the point of view of feasible computation. The diversity of Feasible Mathematics is illustrated by the. contents of this volume which includes papers on weak fragments of arithmetic, on higher type functionals, on bounded linear logic, on sub recursive definitions of complexity classes, on finite model theory, on models of feasible computation for real numbers, on vector spaces and on recursion theory. The vVorkshop on Feasible Mathematics was sponsored by the Mathematical Sciences Institute and was held at Cornell University, June 26-28, 1989 |
Beschreibung: | 1 Online-Ressource (VIII, 352 p) |
ISBN: | 9781461234661 9780817634834 |
DOI: | 10.1007/978-1-4612-3466-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420131 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9781461234661 |c Online |9 978-1-4612-3466-1 | ||
020 | |a 9780817634834 |c Print |9 978-0-8176-3483-4 | ||
024 | 7 | |a 10.1007/978-1-4612-3466-1 |2 doi | |
035 | |a (OCoLC)863773849 | ||
035 | |a (DE-599)BVBBV042420131 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 004 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Buss, Samuel R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Feasible Mathematics |b A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 |c edited by Samuel R. Buss, Philip J. Scott |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1990 | |
300 | |a 1 Online-Ressource (VIII, 352 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Computer Science and Applied Logic |v 9 | |
500 | |a A so-called "effective" algorithm may require arbitrarily large finite amounts of time and space resources, and hence may not be practical in the real world. A "feasible" algorithm is one which only requires a limited amount of space and/or time for execution; the general idea is that a feasible algorithm is one which may be practical on today's or at least tomorrow's computers. There is no definitive analogue of Church's thesis giving a mathematical definition of feasibility; however, the most widely studied mathematical model of feasible computability is polynomial-time computability. Feasible Mathematics includes both the study of feasible computation from a mathematical and logical point of view and the reworking of traditional mathematics from the point of view of feasible computation. The diversity of Feasible Mathematics is illustrated by the. contents of this volume which includes papers on weak fragments of arithmetic, on higher type functionals, on bounded linear logic, on sub recursive definitions of complexity classes, on finite model theory, on models of feasible computation for real numbers, on vector spaces and on recursion theory. The vVorkshop on Feasible Mathematics was sponsored by the Mathematical Sciences Institute and was held at Cornell University, June 26-28, 1989 | ||
650 | 4 | |a Computer science | |
650 | 4 | |a Science (General) | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer Science | |
650 | 4 | |a Computer Science, general | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Science, general | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Komplexität |0 (DE-588)4135369-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Berechnungskomplexität |0 (DE-588)4134751-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computer |0 (DE-588)4070083-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1989 |z Ithaca NY |2 gnd-content | |
689 | 0 | 0 | |a Computer |0 (DE-588)4070083-5 |D s |
689 | 0 | 1 | |a Komplexität |0 (DE-588)4135369-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Berechnungskomplexität |0 (DE-588)4134751-1 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
700 | 1 | |a Scott, Philip J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-3466-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855548 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091640000512 |
---|---|
any_adam_object | |
author | Buss, Samuel R. |
author_facet | Buss, Samuel R. |
author_role | aut |
author_sort | Buss, Samuel R. |
author_variant | s r b sr srb |
building | Verbundindex |
bvnumber | BV042420131 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863773849 (DE-599)BVBBV042420131 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4612-3466-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03927nmm a2200685zcb4500</leader><controlfield tag="001">BV042420131</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461234661</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-3466-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817634834</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3483-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3466-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863773849</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420131</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buss, Samuel R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feasible Mathematics</subfield><subfield code="b">A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989</subfield><subfield code="c">edited by Samuel R. Buss, Philip J. Scott</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 352 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Computer Science and Applied Logic</subfield><subfield code="v">9</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A so-called "effective" algorithm may require arbitrarily large finite amounts of time and space resources, and hence may not be practical in the real world. A "feasible" algorithm is one which only requires a limited amount of space and/or time for execution; the general idea is that a feasible algorithm is one which may be practical on today's or at least tomorrow's computers. There is no definitive analogue of Church's thesis giving a mathematical definition of feasibility; however, the most widely studied mathematical model of feasible computability is polynomial-time computability. Feasible Mathematics includes both the study of feasible computation from a mathematical and logical point of view and the reworking of traditional mathematics from the point of view of feasible computation. The diversity of Feasible Mathematics is illustrated by the. contents of this volume which includes papers on weak fragments of arithmetic, on higher type functionals, on bounded linear logic, on sub recursive definitions of complexity classes, on finite model theory, on models of feasible computation for real numbers, on vector spaces and on recursion theory. The vVorkshop on Feasible Mathematics was sponsored by the Mathematical Sciences Institute and was held at Cornell University, June 26-28, 1989</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexität</subfield><subfield code="0">(DE-588)4135369-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1989</subfield><subfield code="z">Ithaca NY</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexität</subfield><subfield code="0">(DE-588)4135369-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scott, Philip J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3466-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855548</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1989 Ithaca NY gnd-content |
genre_facet | Konferenzschrift 1989 Ithaca NY |
id | DE-604.BV042420131 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461234661 9780817634834 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855548 |
oclc_num | 863773849 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 352 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Computer Science and Applied Logic |
spelling | Buss, Samuel R. Verfasser aut Feasible Mathematics A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 edited by Samuel R. Buss, Philip J. Scott Boston, MA Birkhäuser Boston 1990 1 Online-Ressource (VIII, 352 p) txt rdacontent c rdamedia cr rdacarrier Progress in Computer Science and Applied Logic 9 A so-called "effective" algorithm may require arbitrarily large finite amounts of time and space resources, and hence may not be practical in the real world. A "feasible" algorithm is one which only requires a limited amount of space and/or time for execution; the general idea is that a feasible algorithm is one which may be practical on today's or at least tomorrow's computers. There is no definitive analogue of Church's thesis giving a mathematical definition of feasibility; however, the most widely studied mathematical model of feasible computability is polynomial-time computability. Feasible Mathematics includes both the study of feasible computation from a mathematical and logical point of view and the reworking of traditional mathematics from the point of view of feasible computation. The diversity of Feasible Mathematics is illustrated by the. contents of this volume which includes papers on weak fragments of arithmetic, on higher type functionals, on bounded linear logic, on sub recursive definitions of complexity classes, on finite model theory, on models of feasible computation for real numbers, on vector spaces and on recursion theory. The vVorkshop on Feasible Mathematics was sponsored by the Mathematical Sciences Institute and was held at Cornell University, June 26-28, 1989 Computer science Science (General) Mathematics Computer Science Computer Science, general Mathematics, general Science, general Informatik Mathematik Naturwissenschaft Komplexität (DE-588)4135369-9 gnd rswk-swf Berechnungskomplexität (DE-588)4134751-1 gnd rswk-swf Komplexitätstheorie (DE-588)4120591-1 gnd rswk-swf Computer (DE-588)4070083-5 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1989 Ithaca NY gnd-content Computer (DE-588)4070083-5 s Komplexität (DE-588)4135369-9 s 2\p DE-604 Komplexitätstheorie (DE-588)4120591-1 s 3\p DE-604 Berechnungskomplexität (DE-588)4134751-1 s 4\p DE-604 Scott, Philip J. Sonstige oth https://doi.org/10.1007/978-1-4612-3466-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Buss, Samuel R. Feasible Mathematics A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 Computer science Science (General) Mathematics Computer Science Computer Science, general Mathematics, general Science, general Informatik Mathematik Naturwissenschaft Komplexität (DE-588)4135369-9 gnd Berechnungskomplexität (DE-588)4134751-1 gnd Komplexitätstheorie (DE-588)4120591-1 gnd Computer (DE-588)4070083-5 gnd |
subject_GND | (DE-588)4135369-9 (DE-588)4134751-1 (DE-588)4120591-1 (DE-588)4070083-5 (DE-588)1071861417 |
title | Feasible Mathematics A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 |
title_auth | Feasible Mathematics A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 |
title_exact_search | Feasible Mathematics A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 |
title_full | Feasible Mathematics A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 edited by Samuel R. Buss, Philip J. Scott |
title_fullStr | Feasible Mathematics A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 edited by Samuel R. Buss, Philip J. Scott |
title_full_unstemmed | Feasible Mathematics A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 edited by Samuel R. Buss, Philip J. Scott |
title_short | Feasible Mathematics |
title_sort | feasible mathematics a mathematical sciences institute workshop ithaca new york june 1989 |
title_sub | A Mathematical Sciences Institute Workshop, Ithaca, New York, June 1989 |
topic | Computer science Science (General) Mathematics Computer Science Computer Science, general Mathematics, general Science, general Informatik Mathematik Naturwissenschaft Komplexität (DE-588)4135369-9 gnd Berechnungskomplexität (DE-588)4134751-1 gnd Komplexitätstheorie (DE-588)4120591-1 gnd Computer (DE-588)4070083-5 gnd |
topic_facet | Computer science Science (General) Mathematics Computer Science Computer Science, general Mathematics, general Science, general Informatik Mathematik Naturwissenschaft Komplexität Berechnungskomplexität Komplexitätstheorie Computer Konferenzschrift 1989 Ithaca NY |
url | https://doi.org/10.1007/978-1-4612-3466-1 |
work_keys_str_mv | AT busssamuelr feasiblemathematicsamathematicalsciencesinstituteworkshopithacanewyorkjune1989 AT scottphilipj feasiblemathematicsamathematicalsciencesinstituteworkshopithacanewyorkjune1989 |