Estimation in Semiparametric Models: Some Recent Developments
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
1990
|
Schriftenreihe: | Lecture Notes in Statistics
63 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Assume one has to estimate the mean J x P( dx) (or the median of P, or any other functional t;;(P)) on the basis ofi.i.d. observations from P. Ifnothing is known about P, then the sample mean is certainly the best estimator one can think of. If P is known to be the member of a certain parametric family, say {Po: {) E e}, one can usually do better by estimating {) first, say by {)(n)(.~.), and using J XPo(n)(;r.) (dx) as an estimate for J xPo(dx). There is an "intermediate" range, where we know something about the unknown probability measure P, but less than parametric theory takes for granted. Practical problems have always led statisticians to invent estimators for such intermediate models, but it usually remained open whether these estimators are nearly optimal or not. There was one exception: The case of "adaptivity", where a "nonparametric" estimate exists which is asymptotically optimal for any parametric submodel. The standard (and for a long time only) example of such a fortunate situation was the estimation of the center of symmetry for a distribution of unknown shape |
Beschreibung: | 1 Online-Ressource (III, 112p) |
ISBN: | 9781461233961 9780387972381 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4612-3396-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420122 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9781461233961 |c Online |9 978-1-4612-3396-1 | ||
020 | |a 9780387972381 |c Print |9 978-0-387-97238-1 | ||
024 | 7 | |a 10.1007/978-1-4612-3396-1 |2 doi | |
035 | |a (OCoLC)863882434 | ||
035 | |a (DE-599)BVBBV042420122 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pfanzagl, Johann |e Verfasser |4 aut | |
245 | 1 | 0 | |a Estimation in Semiparametric Models |b Some Recent Developments |c by Johann Pfanzagl |
264 | 1 | |a New York, NY |b Springer US |c 1990 | |
300 | |a 1 Online-Ressource (III, 112p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Statistics |v 63 |x 0930-0325 | |
500 | |a Assume one has to estimate the mean J x P( dx) (or the median of P, or any other functional t;;(P)) on the basis ofi.i.d. observations from P. Ifnothing is known about P, then the sample mean is certainly the best estimator one can think of. If P is known to be the member of a certain parametric family, say {Po: {) E e}, one can usually do better by estimating {) first, say by {)(n)(.~.), and using J XPo(n)(;r.) (dx) as an estimate for J xPo(dx). There is an "intermediate" range, where we know something about the unknown probability measure P, but less than parametric theory takes for granted. Practical problems have always led statisticians to invent estimators for such intermediate models, but it usually remained open whether these estimators are nearly optimal or not. There was one exception: The case of "adaptivity", where a "nonparametric" estimate exists which is asymptotically optimal for any parametric submodel. The standard (and for a long time only) example of such a fortunate situation was the estimation of the center of symmetry for a distribution of unknown shape | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Parameterschätzung |0 (DE-588)4044614-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Semiparametrisches Modell |0 (DE-588)4232479-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schätzung |0 (DE-588)4193791-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Semiparametrische Schätzung |0 (DE-588)4232079-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Semiparametrisches Modell |0 (DE-588)4232479-8 |D s |
689 | 0 | 1 | |a Schätzung |0 (DE-588)4193791-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Parameterschätzung |0 (DE-588)4044614-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Semiparametrische Schätzung |0 (DE-588)4232079-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-3396-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855539 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091637903360 |
---|---|
any_adam_object | |
author | Pfanzagl, Johann |
author_facet | Pfanzagl, Johann |
author_role | aut |
author_sort | Pfanzagl, Johann |
author_variant | j p jp |
building | Verbundindex |
bvnumber | BV042420122 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863882434 (DE-599)BVBBV042420122 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-3396-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03222nmm a2200565zcb4500</leader><controlfield tag="001">BV042420122</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461233961</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-3396-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387972381</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-97238-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3396-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863882434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420122</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pfanzagl, Johann</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation in Semiparametric Models</subfield><subfield code="b">Some Recent Developments</subfield><subfield code="c">by Johann Pfanzagl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (III, 112p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">63</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Assume one has to estimate the mean J x P( dx) (or the median of P, or any other functional t;;(P)) on the basis ofi.i.d. observations from P. Ifnothing is known about P, then the sample mean is certainly the best estimator one can think of. If P is known to be the member of a certain parametric family, say {Po: {) E e}, one can usually do better by estimating {) first, say by {)(n)(.~.), and using J XPo(n)(;r.) (dx) as an estimate for J xPo(dx). There is an "intermediate" range, where we know something about the unknown probability measure P, but less than parametric theory takes for granted. Practical problems have always led statisticians to invent estimators for such intermediate models, but it usually remained open whether these estimators are nearly optimal or not. There was one exception: The case of "adaptivity", where a "nonparametric" estimate exists which is asymptotically optimal for any parametric submodel. The standard (and for a long time only) example of such a fortunate situation was the estimation of the center of symmetry for a distribution of unknown shape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parameterschätzung</subfield><subfield code="0">(DE-588)4044614-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semiparametrisches Modell</subfield><subfield code="0">(DE-588)4232479-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schätzung</subfield><subfield code="0">(DE-588)4193791-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semiparametrische Schätzung</subfield><subfield code="0">(DE-588)4232079-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Semiparametrisches Modell</subfield><subfield code="0">(DE-588)4232479-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schätzung</subfield><subfield code="0">(DE-588)4193791-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Parameterschätzung</subfield><subfield code="0">(DE-588)4044614-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Semiparametrische Schätzung</subfield><subfield code="0">(DE-588)4232079-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3396-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855539</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420122 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461233961 9780387972381 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855539 |
oclc_num | 863882434 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (III, 112p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer US |
record_format | marc |
series2 | Lecture Notes in Statistics |
spelling | Pfanzagl, Johann Verfasser aut Estimation in Semiparametric Models Some Recent Developments by Johann Pfanzagl New York, NY Springer US 1990 1 Online-Ressource (III, 112p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 63 0930-0325 Assume one has to estimate the mean J x P( dx) (or the median of P, or any other functional t;;(P)) on the basis ofi.i.d. observations from P. Ifnothing is known about P, then the sample mean is certainly the best estimator one can think of. If P is known to be the member of a certain parametric family, say {Po: {) E e}, one can usually do better by estimating {) first, say by {)(n)(.~.), and using J XPo(n)(;r.) (dx) as an estimate for J xPo(dx). There is an "intermediate" range, where we know something about the unknown probability measure P, but less than parametric theory takes for granted. Practical problems have always led statisticians to invent estimators for such intermediate models, but it usually remained open whether these estimators are nearly optimal or not. There was one exception: The case of "adaptivity", where a "nonparametric" estimate exists which is asymptotically optimal for any parametric submodel. The standard (and for a long time only) example of such a fortunate situation was the estimation of the center of symmetry for a distribution of unknown shape Statistics Statistics, general Statistik Parameterschätzung (DE-588)4044614-1 gnd rswk-swf Semiparametrisches Modell (DE-588)4232479-8 gnd rswk-swf Schätzung (DE-588)4193791-0 gnd rswk-swf Semiparametrische Schätzung (DE-588)4232079-3 gnd rswk-swf Semiparametrisches Modell (DE-588)4232479-8 s Schätzung (DE-588)4193791-0 s 1\p DE-604 Parameterschätzung (DE-588)4044614-1 s 2\p DE-604 Semiparametrische Schätzung (DE-588)4232079-3 s 3\p DE-604 https://doi.org/10.1007/978-1-4612-3396-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pfanzagl, Johann Estimation in Semiparametric Models Some Recent Developments Statistics Statistics, general Statistik Parameterschätzung (DE-588)4044614-1 gnd Semiparametrisches Modell (DE-588)4232479-8 gnd Schätzung (DE-588)4193791-0 gnd Semiparametrische Schätzung (DE-588)4232079-3 gnd |
subject_GND | (DE-588)4044614-1 (DE-588)4232479-8 (DE-588)4193791-0 (DE-588)4232079-3 |
title | Estimation in Semiparametric Models Some Recent Developments |
title_auth | Estimation in Semiparametric Models Some Recent Developments |
title_exact_search | Estimation in Semiparametric Models Some Recent Developments |
title_full | Estimation in Semiparametric Models Some Recent Developments by Johann Pfanzagl |
title_fullStr | Estimation in Semiparametric Models Some Recent Developments by Johann Pfanzagl |
title_full_unstemmed | Estimation in Semiparametric Models Some Recent Developments by Johann Pfanzagl |
title_short | Estimation in Semiparametric Models |
title_sort | estimation in semiparametric models some recent developments |
title_sub | Some Recent Developments |
topic | Statistics Statistics, general Statistik Parameterschätzung (DE-588)4044614-1 gnd Semiparametrisches Modell (DE-588)4232479-8 gnd Schätzung (DE-588)4193791-0 gnd Semiparametrische Schätzung (DE-588)4232079-3 gnd |
topic_facet | Statistics Statistics, general Statistik Parameterschätzung Semiparametrisches Modell Schätzung Semiparametrische Schätzung |
url | https://doi.org/10.1007/978-1-4612-3396-1 |
work_keys_str_mv | AT pfanzagljohann estimationinsemiparametricmodelssomerecentdevelopments |