Continuous-Time Markov Chains: An Applications-Oriented Approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1991
|
Schriftenreihe: | Springer Series in Statistics, Probability and its Applications
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Continuous time parameter Markov chains have been useful for modeling various random phenomena occurring in queueing theory, genetics, demography, epidemiology, and competing populations. This is the first book about those aspects of the theory of continuous time Markov chains which are useful in applications to such areas. It studies continuous time Markov chains through the transition function and corresponding q-matrix, rather than sample paths. An extensive discussion of birth and death processes, including the Stieltjes moment problem, and the Karlin-McGregor method of solution of the birth and death processes and multidimensional population processes is included, and there is an extensive bibliography. Virtually all of this material is appearing in book form for the first time |
Beschreibung: | 1 Online-Ressource (XII, 355 p) |
ISBN: | 9781461230380 9781461277729 |
ISSN: | 0172-7397 |
DOI: | 10.1007/978-1-4612-3038-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420104 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1991 |||| o||u| ||||||eng d | ||
020 | |a 9781461230380 |c Online |9 978-1-4612-3038-0 | ||
020 | |a 9781461277729 |c Print |9 978-1-4612-7772-9 | ||
024 | 7 | |a 10.1007/978-1-4612-3038-0 |2 doi | |
035 | |a (OCoLC)863738925 | ||
035 | |a (DE-599)BVBBV042420104 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Anderson, William J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Continuous-Time Markov Chains |b An Applications-Oriented Approach |c by William J. Anderson |
264 | 1 | |a New York, NY |b Springer New York |c 1991 | |
300 | |a 1 Online-Ressource (XII, 355 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Statistics, Probability and its Applications |x 0172-7397 | |
500 | |a Continuous time parameter Markov chains have been useful for modeling various random phenomena occurring in queueing theory, genetics, demography, epidemiology, and competing populations. This is the first book about those aspects of the theory of continuous time Markov chains which are useful in applications to such areas. It studies continuous time Markov chains through the transition function and corresponding q-matrix, rather than sample paths. An extensive discussion of birth and death processes, including the Stieltjes moment problem, and the Karlin-McGregor method of solution of the birth and death processes and multidimensional population processes is included, and there is an extensive bibliography. Virtually all of this material is appearing in book form for the first time | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Markov-Prozess |0 (DE-588)4134948-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Markov-Kette mit stetiger Zeit |0 (DE-588)4272650-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Markov-Kette |0 (DE-588)4037612-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Prozess |0 (DE-588)4134948-9 |D s |
689 | 0 | 1 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Markov-Kette mit stetiger Zeit |0 (DE-588)4272650-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Markov-Kette |0 (DE-588)4037612-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-3038-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855521 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091580231680 |
---|---|
any_adam_object | |
author | Anderson, William J. |
author_facet | Anderson, William J. |
author_role | aut |
author_sort | Anderson, William J. |
author_variant | w j a wj wja |
building | Verbundindex |
bvnumber | BV042420104 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863738925 (DE-599)BVBBV042420104 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-3038-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03031nmm a2200577zc 4500</leader><controlfield tag="001">BV042420104</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461230380</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-3038-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461277729</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7772-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3038-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863738925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420104</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anderson, William J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous-Time Markov Chains</subfield><subfield code="b">An Applications-Oriented Approach</subfield><subfield code="c">by William J. Anderson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 355 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Statistics, Probability and its Applications</subfield><subfield code="x">0172-7397</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Continuous time parameter Markov chains have been useful for modeling various random phenomena occurring in queueing theory, genetics, demography, epidemiology, and competing populations. This is the first book about those aspects of the theory of continuous time Markov chains which are useful in applications to such areas. It studies continuous time Markov chains through the transition function and corresponding q-matrix, rather than sample paths. An extensive discussion of birth and death processes, including the Stieltjes moment problem, and the Karlin-McGregor method of solution of the birth and death processes and multidimensional population processes is included, and there is an extensive bibliography. Virtually all of this material is appearing in book form for the first time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Kette mit stetiger Zeit</subfield><subfield code="0">(DE-588)4272650-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Markov-Kette mit stetiger Zeit</subfield><subfield code="0">(DE-588)4272650-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3038-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855521</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420104 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461230380 9781461277729 |
issn | 0172-7397 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855521 |
oclc_num | 863738925 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 355 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Series in Statistics, Probability and its Applications |
spelling | Anderson, William J. Verfasser aut Continuous-Time Markov Chains An Applications-Oriented Approach by William J. Anderson New York, NY Springer New York 1991 1 Online-Ressource (XII, 355 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Statistics, Probability and its Applications 0172-7397 Continuous time parameter Markov chains have been useful for modeling various random phenomena occurring in queueing theory, genetics, demography, epidemiology, and competing populations. This is the first book about those aspects of the theory of continuous time Markov chains which are useful in applications to such areas. It studies continuous time Markov chains through the transition function and corresponding q-matrix, rather than sample paths. An extensive discussion of birth and death processes, including the Stieltjes moment problem, and the Karlin-McGregor method of solution of the birth and death processes and multidimensional population processes is included, and there is an extensive bibliography. Virtually all of this material is appearing in book form for the first time Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Prozess (DE-588)4134948-9 gnd rswk-swf Markov-Kette mit stetiger Zeit (DE-588)4272650-5 gnd rswk-swf Zeitreihenanalyse (DE-588)4067486-1 gnd rswk-swf Markov-Kette (DE-588)4037612-6 gnd rswk-swf Markov-Prozess (DE-588)4134948-9 s Zeitreihenanalyse (DE-588)4067486-1 s 1\p DE-604 Markov-Kette mit stetiger Zeit (DE-588)4272650-5 s 2\p DE-604 Markov-Kette (DE-588)4037612-6 s 3\p DE-604 https://doi.org/10.1007/978-1-4612-3038-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Anderson, William J. Continuous-Time Markov Chains An Applications-Oriented Approach Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Prozess (DE-588)4134948-9 gnd Markov-Kette mit stetiger Zeit (DE-588)4272650-5 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd Markov-Kette (DE-588)4037612-6 gnd |
subject_GND | (DE-588)4134948-9 (DE-588)4272650-5 (DE-588)4067486-1 (DE-588)4037612-6 |
title | Continuous-Time Markov Chains An Applications-Oriented Approach |
title_auth | Continuous-Time Markov Chains An Applications-Oriented Approach |
title_exact_search | Continuous-Time Markov Chains An Applications-Oriented Approach |
title_full | Continuous-Time Markov Chains An Applications-Oriented Approach by William J. Anderson |
title_fullStr | Continuous-Time Markov Chains An Applications-Oriented Approach by William J. Anderson |
title_full_unstemmed | Continuous-Time Markov Chains An Applications-Oriented Approach by William J. Anderson |
title_short | Continuous-Time Markov Chains |
title_sort | continuous time markov chains an applications oriented approach |
title_sub | An Applications-Oriented Approach |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Prozess (DE-588)4134948-9 gnd Markov-Kette mit stetiger Zeit (DE-588)4272650-5 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd Markov-Kette (DE-588)4037612-6 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Prozess Markov-Kette mit stetiger Zeit Zeitreihenanalyse Markov-Kette |
url | https://doi.org/10.1007/978-1-4612-3038-0 |
work_keys_str_mv | AT andersonwilliamj continuoustimemarkovchainsanapplicationsorientedapproach |