Time Series Analysis and Applications to Geophysical Systems: Part I
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2004
|
Schriftenreihe: | The IMA Volumes in Mathematics and its Applications
45 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Part of a two volume set based on a recent IMA program of the same name. The goal of the program and these books is to develop a community of statistical and other scientists kept up-to-date on developments in this quickly evolving and interdisciplinary field. Consequently, these books present recent material by distinguished researchers. Topics discussed in Part I include nonlinear and non- Gaussian models and processes (higher order moments and spectra, nonlinear systems, applications in astronomy, geophysics, engineering, and simulation) and the interaction of time series analysis and statistics (information model identification, categorical valued time series, nonparametric and semiparametric methods). Self-similar processes and long-range dependence (time series with long memory, fractals, 1/f noise, stable noise) and time series research common to engineers and economists (modeling of multivariate and possibly non-stationary time series, state space and adaptive methods) are discussed in Part II. |
Beschreibung: | 1 Online-Ressource (XVIII, 389p. 55 illus) |
ISBN: | 9781461229629 9781461277354 |
ISSN: | 0940-6573 |
DOI: | 10.1007/978-1-4612-2962-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420096 | ||
003 | DE-604 | ||
005 | 20240215 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781461229629 |c Online |9 978-1-4612-2962-9 | ||
020 | |a 9781461277354 |c Print |9 978-1-4612-7735-4 | ||
024 | 7 | |a 10.1007/978-1-4612-2962-9 |2 doi | |
035 | |a (OCoLC)879624858 | ||
035 | |a (DE-599)BVBBV042420096 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brillinger, David R. |d 1937- |e Verfasser |0 (DE-588)122230353 |4 aut | |
245 | 1 | 0 | |a Time Series Analysis and Applications to Geophysical Systems |b Part I |c edited by David R. Brillinger, Enders Anthony Robinson, Frederic Paik Schoenberg |
264 | 1 | |a New York, NY |b Springer New York |c 2004 | |
300 | |a 1 Online-Ressource (XVIII, 389p. 55 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The IMA Volumes in Mathematics and its Applications |v 45 |x 0940-6573 | |
500 | |a Part of a two volume set based on a recent IMA program of the same name. The goal of the program and these books is to develop a community of statistical and other scientists kept up-to-date on developments in this quickly evolving and interdisciplinary field. Consequently, these books present recent material by distinguished researchers. Topics discussed in Part I include nonlinear and non- Gaussian models and processes (higher order moments and spectra, nonlinear systems, applications in astronomy, geophysics, engineering, and simulation) and the interaction of time series analysis and statistics (information model identification, categorical valued time series, nonparametric and semiparametric methods). Self-similar processes and long-range dependence (time series with long memory, fractals, 1/f noise, stable noise) and time series research common to engineers and economists (modeling of multivariate and possibly non-stationary time series, state space and adaptive methods) are discussed in Part II. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Robinson, Enders A. |d 1930- |e Sonstige |0 (DE-588)1172730911 |4 oth | |
700 | 1 | |a Schoenberg, Frederic Paik |e Sonstige |0 (DE-588)171920236 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2962-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855513 |
Datensatz im Suchindex
_version_ | 1804153091583377409 |
---|---|
any_adam_object | |
author | Brillinger, David R. 1937- |
author_GND | (DE-588)122230353 (DE-588)1172730911 (DE-588)171920236 |
author_facet | Brillinger, David R. 1937- |
author_role | aut |
author_sort | Brillinger, David R. 1937- |
author_variant | d r b dr drb |
building | Verbundindex |
bvnumber | BV042420096 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624858 (DE-599)BVBBV042420096 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2962-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02611nmm a2200433zcb4500</leader><controlfield tag="001">BV042420096</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461229629</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2962-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461277354</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7735-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2962-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624858</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420096</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brillinger, David R.</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122230353</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time Series Analysis and Applications to Geophysical Systems</subfield><subfield code="b">Part I</subfield><subfield code="c">edited by David R. Brillinger, Enders Anthony Robinson, Frederic Paik Schoenberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 389p. 55 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The IMA Volumes in Mathematics and its Applications</subfield><subfield code="v">45</subfield><subfield code="x">0940-6573</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part of a two volume set based on a recent IMA program of the same name. The goal of the program and these books is to develop a community of statistical and other scientists kept up-to-date on developments in this quickly evolving and interdisciplinary field. Consequently, these books present recent material by distinguished researchers. Topics discussed in Part I include nonlinear and non- Gaussian models and processes (higher order moments and spectra, nonlinear systems, applications in astronomy, geophysics, engineering, and simulation) and the interaction of time series analysis and statistics (information model identification, categorical valued time series, nonparametric and semiparametric methods). Self-similar processes and long-range dependence (time series with long memory, fractals, 1/f noise, stable noise) and time series research common to engineers and economists (modeling of multivariate and possibly non-stationary time series, state space and adaptive methods) are discussed in Part II.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, Enders A.</subfield><subfield code="d">1930-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1172730911</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schoenberg, Frederic Paik</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)171920236</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2962-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855513</subfield></datafield></record></collection> |
id | DE-604.BV042420096 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461229629 9781461277354 |
issn | 0940-6573 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855513 |
oclc_num | 879624858 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 389p. 55 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer New York |
record_format | marc |
series2 | The IMA Volumes in Mathematics and its Applications |
spelling | Brillinger, David R. 1937- Verfasser (DE-588)122230353 aut Time Series Analysis and Applications to Geophysical Systems Part I edited by David R. Brillinger, Enders Anthony Robinson, Frederic Paik Schoenberg New York, NY Springer New York 2004 1 Online-Ressource (XVIII, 389p. 55 illus) txt rdacontent c rdamedia cr rdacarrier The IMA Volumes in Mathematics and its Applications 45 0940-6573 Part of a two volume set based on a recent IMA program of the same name. The goal of the program and these books is to develop a community of statistical and other scientists kept up-to-date on developments in this quickly evolving and interdisciplinary field. Consequently, these books present recent material by distinguished researchers. Topics discussed in Part I include nonlinear and non- Gaussian models and processes (higher order moments and spectra, nonlinear systems, applications in astronomy, geophysics, engineering, and simulation) and the interaction of time series analysis and statistics (information model identification, categorical valued time series, nonparametric and semiparametric methods). Self-similar processes and long-range dependence (time series with long memory, fractals, 1/f noise, stable noise) and time series research common to engineers and economists (modeling of multivariate and possibly non-stationary time series, state space and adaptive methods) are discussed in Part II. Mathematics Global analysis (Mathematics) Analysis Mathematik Robinson, Enders A. 1930- Sonstige (DE-588)1172730911 oth Schoenberg, Frederic Paik Sonstige (DE-588)171920236 oth https://doi.org/10.1007/978-1-4612-2962-9 Verlag Volltext |
spellingShingle | Brillinger, David R. 1937- Time Series Analysis and Applications to Geophysical Systems Part I Mathematics Global analysis (Mathematics) Analysis Mathematik |
title | Time Series Analysis and Applications to Geophysical Systems Part I |
title_auth | Time Series Analysis and Applications to Geophysical Systems Part I |
title_exact_search | Time Series Analysis and Applications to Geophysical Systems Part I |
title_full | Time Series Analysis and Applications to Geophysical Systems Part I edited by David R. Brillinger, Enders Anthony Robinson, Frederic Paik Schoenberg |
title_fullStr | Time Series Analysis and Applications to Geophysical Systems Part I edited by David R. Brillinger, Enders Anthony Robinson, Frederic Paik Schoenberg |
title_full_unstemmed | Time Series Analysis and Applications to Geophysical Systems Part I edited by David R. Brillinger, Enders Anthony Robinson, Frederic Paik Schoenberg |
title_short | Time Series Analysis and Applications to Geophysical Systems |
title_sort | time series analysis and applications to geophysical systems part i |
title_sub | Part I |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik |
url | https://doi.org/10.1007/978-1-4612-2962-9 |
work_keys_str_mv | AT brillingerdavidr timeseriesanalysisandapplicationstogeophysicalsystemsparti AT robinsonendersa timeseriesanalysisandapplicationstogeophysicalsystemsparti AT schoenbergfredericpaik timeseriesanalysisandapplicationstogeophysicalsystemsparti |