Blowup for Nonlinear Hyperbolic Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1995
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
17 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The content of this book corresponds to a one-semester course taught at the University of Paris-Sud (Orsay) in the spring 1994. It is accessible to students or researchers with a basic elementary knowledge of Partial Differential Equations, especially of hyperbolic PDE (Cauchy problem, wave operator, energy inequality, finite speed of propagation, symmetric systems, etc.). This course is not some final encyclopedic reference gathering all available results. We tried instead to provide a short synthetic view of what we believe are the main results obtained so far, with self-contained proofs. In fact, many of the most important questions in the field are still completely open, and we hope that this monograph will give young mathematicians the desire to perform further research. The bibliography, restricted to papers where blowup is explicitly discussed, is the only part we tried to make as complete as possible (despite the new preprints circulating everyday) j the references are generally not mentioned in the text, but in the Notes at the end of each chapter. Basic references corresponding best to the content of these Notes are the books by Courant and Friedrichs [CFr], Hormander [HoI] and [Ho2], Majda [Ma] and Smoller [Sm], and the survey papers by John [J06], Strauss [St] and Zuily [Zu] |
Beschreibung: | 1 Online-Ressource (113p) |
ISBN: | 9781461225782 9781461275886 |
DOI: | 10.1007/978-1-4612-2578-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420051 | ||
003 | DE-604 | ||
005 | 20210526 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461225782 |c Online |9 978-1-4612-2578-2 | ||
020 | |a 9781461275886 |c Print |9 978-1-4612-7588-6 | ||
024 | 7 | |a 10.1007/978-1-4612-2578-2 |2 doi | |
035 | |a (OCoLC)863757539 | ||
035 | |a (DE-599)BVBBV042420051 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Alinhac, Serge |e Verfasser |4 aut | |
245 | 1 | 0 | |a Blowup for Nonlinear Hyperbolic Equations |c by Serge Alinhac |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1995 | |
300 | |a 1 Online-Ressource (113p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Nonlinear Differential Equations and Their Applications |v 17 | |
500 | |a The content of this book corresponds to a one-semester course taught at the University of Paris-Sud (Orsay) in the spring 1994. It is accessible to students or researchers with a basic elementary knowledge of Partial Differential Equations, especially of hyperbolic PDE (Cauchy problem, wave operator, energy inequality, finite speed of propagation, symmetric systems, etc.). This course is not some final encyclopedic reference gathering all available results. We tried instead to provide a short synthetic view of what we believe are the main results obtained so far, with self-contained proofs. In fact, many of the most important questions in the field are still completely open, and we hope that this monograph will give young mathematicians the desire to perform further research. The bibliography, restricted to papers where blowup is explicitly discussed, is the only part we tried to make as complete as possible (despite the new preprints circulating everyday) j the references are generally not mentioned in the text, but in the Notes at the end of each chapter. Basic references corresponding best to the content of these Notes are the books by Courant and Friedrichs [CFr], Hormander [HoI] and [Ho2], Majda [Ma] and Smoller [Sm], and the survey papers by John [J06], Strauss [St] and Zuily [Zu] | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Aufblasung |0 (DE-588)4139570-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare hyperbolische Differentialgleichung |0 (DE-588)4228136-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare hyperbolische Differentialgleichung |0 (DE-588)4228136-2 |D s |
689 | 0 | 1 | |a Aufblasung |0 (DE-588)4139570-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 17 |w (DE-604)BV036582883 |9 17 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2578-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855468 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091449159680 |
---|---|
any_adam_object | |
author | Alinhac, Serge |
author_facet | Alinhac, Serge |
author_role | aut |
author_sort | Alinhac, Serge |
author_variant | s a sa |
building | Verbundindex |
bvnumber | BV042420051 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863757539 (DE-599)BVBBV042420051 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2578-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03233nmm a2200517zcb4500</leader><controlfield tag="001">BV042420051</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210526 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461225782</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2578-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461275886</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7588-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2578-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863757539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420051</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alinhac, Serge</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blowup for Nonlinear Hyperbolic Equations</subfield><subfield code="c">by Serge Alinhac</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (113p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">17</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The content of this book corresponds to a one-semester course taught at the University of Paris-Sud (Orsay) in the spring 1994. It is accessible to students or researchers with a basic elementary knowledge of Partial Differential Equations, especially of hyperbolic PDE (Cauchy problem, wave operator, energy inequality, finite speed of propagation, symmetric systems, etc.). This course is not some final encyclopedic reference gathering all available results. We tried instead to provide a short synthetic view of what we believe are the main results obtained so far, with self-contained proofs. In fact, many of the most important questions in the field are still completely open, and we hope that this monograph will give young mathematicians the desire to perform further research. The bibliography, restricted to papers where blowup is explicitly discussed, is the only part we tried to make as complete as possible (despite the new preprints circulating everyday) j the references are generally not mentioned in the text, but in the Notes at the end of each chapter. Basic references corresponding best to the content of these Notes are the books by Courant and Friedrichs [CFr], Hormander [HoI] and [Ho2], Majda [Ma] and Smoller [Sm], and the survey papers by John [J06], Strauss [St] and Zuily [Zu]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aufblasung</subfield><subfield code="0">(DE-588)4139570-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Aufblasung</subfield><subfield code="0">(DE-588)4139570-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">17</subfield><subfield code="w">(DE-604)BV036582883</subfield><subfield code="9">17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2578-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855468</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420051 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461225782 9781461275886 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855468 |
oclc_num | 863757539 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (113p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Nonlinear Differential Equations and Their Applications |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Alinhac, Serge Verfasser aut Blowup for Nonlinear Hyperbolic Equations by Serge Alinhac Boston, MA Birkhäuser Boston 1995 1 Online-Ressource (113p) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 17 The content of this book corresponds to a one-semester course taught at the University of Paris-Sud (Orsay) in the spring 1994. It is accessible to students or researchers with a basic elementary knowledge of Partial Differential Equations, especially of hyperbolic PDE (Cauchy problem, wave operator, energy inequality, finite speed of propagation, symmetric systems, etc.). This course is not some final encyclopedic reference gathering all available results. We tried instead to provide a short synthetic view of what we believe are the main results obtained so far, with self-contained proofs. In fact, many of the most important questions in the field are still completely open, and we hope that this monograph will give young mathematicians the desire to perform further research. The bibliography, restricted to papers where blowup is explicitly discussed, is the only part we tried to make as complete as possible (despite the new preprints circulating everyday) j the references are generally not mentioned in the text, but in the Notes at the end of each chapter. Basic references corresponding best to the content of these Notes are the books by Courant and Friedrichs [CFr], Hormander [HoI] and [Ho2], Majda [Ma] and Smoller [Sm], and the survey papers by John [J06], Strauss [St] and Zuily [Zu] Mathematics Global analysis (Mathematics) Differential equations, partial Partial Differential Equations Analysis Mathematik Aufblasung (DE-588)4139570-0 gnd rswk-swf Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd rswk-swf Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 s Aufblasung (DE-588)4139570-0 s 1\p DE-604 Progress in Nonlinear Differential Equations and Their Applications 17 (DE-604)BV036582883 17 https://doi.org/10.1007/978-1-4612-2578-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Alinhac, Serge Blowup for Nonlinear Hyperbolic Equations Progress in Nonlinear Differential Equations and Their Applications Mathematics Global analysis (Mathematics) Differential equations, partial Partial Differential Equations Analysis Mathematik Aufblasung (DE-588)4139570-0 gnd Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd |
subject_GND | (DE-588)4139570-0 (DE-588)4228136-2 |
title | Blowup for Nonlinear Hyperbolic Equations |
title_auth | Blowup for Nonlinear Hyperbolic Equations |
title_exact_search | Blowup for Nonlinear Hyperbolic Equations |
title_full | Blowup for Nonlinear Hyperbolic Equations by Serge Alinhac |
title_fullStr | Blowup for Nonlinear Hyperbolic Equations by Serge Alinhac |
title_full_unstemmed | Blowup for Nonlinear Hyperbolic Equations by Serge Alinhac |
title_short | Blowup for Nonlinear Hyperbolic Equations |
title_sort | blowup for nonlinear hyperbolic equations |
topic | Mathematics Global analysis (Mathematics) Differential equations, partial Partial Differential Equations Analysis Mathematik Aufblasung (DE-588)4139570-0 gnd Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Differential equations, partial Partial Differential Equations Analysis Mathematik Aufblasung Nichtlineare hyperbolische Differentialgleichung |
url | https://doi.org/10.1007/978-1-4612-2578-2 |
volume_link | (DE-604)BV036582883 |
work_keys_str_mv | AT alinhacserge blowupfornonlinearhyperbolicequations |