Topological Nonlinear Analysis: Degree, Singularity, and Variations
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1995
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
15 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Topological tools in Nonlinear Analysis had a tremendous development during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Methods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of starting with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent results |
Beschreibung: | 1 Online-Ressource (531p) |
ISBN: | 9781461225706 9781461275848 |
DOI: | 10.1007/978-1-4612-2570-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420049 | ||
003 | DE-604 | ||
005 | 20210526 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461225706 |c Online |9 978-1-4612-2570-6 | ||
020 | |a 9781461275848 |c Print |9 978-1-4612-7584-8 | ||
024 | 7 | |a 10.1007/978-1-4612-2570-6 |2 doi | |
035 | |a (OCoLC)863734301 | ||
035 | |a (DE-599)BVBBV042420049 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Topological Nonlinear Analysis |b Degree, Singularity, and Variations |c edited by Michele Matzeu, Alfonso Vignoli |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1995 | |
300 | |a 1 Online-Ressource (531p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Nonlinear Differential Equations and Their Applications |v 15 | |
500 | |a Topological tools in Nonlinear Analysis had a tremendous development during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Methods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of starting with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent results | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Topology | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |D s |
689 | 0 | 1 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Matzeu, Michele |4 edt | |
700 | 1 | |a Vignoli, Alfonso |d 1940- |0 (DE-588)12202544X |4 edt | |
830 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 15 |w (DE-604)BV036582883 |9 15 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2570-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855466 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091447062528 |
---|---|
any_adam_object | |
author2 | Matzeu, Michele Vignoli, Alfonso 1940- |
author2_role | edt edt |
author2_variant | m m mm a v av |
author_GND | (DE-588)12202544X |
author_facet | Matzeu, Michele Vignoli, Alfonso 1940- |
building | Verbundindex |
bvnumber | BV042420049 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863734301 (DE-599)BVBBV042420049 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2570-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03657nmm a2200541zcb4500</leader><controlfield tag="001">BV042420049</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210526 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461225706</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2570-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461275848</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7584-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2570-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863734301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420049</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological Nonlinear Analysis</subfield><subfield code="b">Degree, Singularity, and Variations</subfield><subfield code="c">edited by Michele Matzeu, Alfonso Vignoli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (531p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">15</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Topological tools in Nonlinear Analysis had a tremendous development during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Methods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of starting with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matzeu, Michele</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vignoli, Alfonso</subfield><subfield code="d">1940-</subfield><subfield code="0">(DE-588)12202544X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">15</subfield><subfield code="w">(DE-604)BV036582883</subfield><subfield code="9">15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2570-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855466</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042420049 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461225706 9781461275848 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855466 |
oclc_num | 863734301 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (531p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Nonlinear Differential Equations and Their Applications |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Topological Nonlinear Analysis Degree, Singularity, and Variations edited by Michele Matzeu, Alfonso Vignoli Boston, MA Birkhäuser Boston 1995 1 Online-Ressource (531p) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 15 Topological tools in Nonlinear Analysis had a tremendous development during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Methods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of starting with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent results Mathematics Global analysis (Mathematics) Topology Analysis Mathematik Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Nichtlineare Funktionalanalysis (DE-588)4042093-0 s Algebraische Topologie (DE-588)4120861-4 s 2\p DE-604 Matzeu, Michele edt Vignoli, Alfonso 1940- (DE-588)12202544X edt Progress in Nonlinear Differential Equations and Their Applications 15 (DE-604)BV036582883 15 https://doi.org/10.1007/978-1-4612-2570-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Topological Nonlinear Analysis Degree, Singularity, and Variations Progress in Nonlinear Differential Equations and Their Applications Mathematics Global analysis (Mathematics) Topology Analysis Mathematik Algebraische Topologie (DE-588)4120861-4 gnd Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd |
subject_GND | (DE-588)4120861-4 (DE-588)4042093-0 (DE-588)4143413-4 |
title | Topological Nonlinear Analysis Degree, Singularity, and Variations |
title_auth | Topological Nonlinear Analysis Degree, Singularity, and Variations |
title_exact_search | Topological Nonlinear Analysis Degree, Singularity, and Variations |
title_full | Topological Nonlinear Analysis Degree, Singularity, and Variations edited by Michele Matzeu, Alfonso Vignoli |
title_fullStr | Topological Nonlinear Analysis Degree, Singularity, and Variations edited by Michele Matzeu, Alfonso Vignoli |
title_full_unstemmed | Topological Nonlinear Analysis Degree, Singularity, and Variations edited by Michele Matzeu, Alfonso Vignoli |
title_short | Topological Nonlinear Analysis |
title_sort | topological nonlinear analysis degree singularity and variations |
title_sub | Degree, Singularity, and Variations |
topic | Mathematics Global analysis (Mathematics) Topology Analysis Mathematik Algebraische Topologie (DE-588)4120861-4 gnd Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Topology Analysis Mathematik Algebraische Topologie Nichtlineare Funktionalanalysis Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4612-2570-6 |
volume_link | (DE-604)BV036582883 |
work_keys_str_mv | AT matzeumichele topologicalnonlinearanalysisdegreesingularityandvariations AT vignolialfonso topologicalnonlinearanalysisdegreesingularityandvariations |