Feasible Mathematics II:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1995
|
Schriftenreihe: | Progress in Computer Science and Applied Logic
13 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Perspicuity is part of proof. If the process by means of which I get a result were not surveyable, I might indeed make a note that this number is what comes out - but what fact is this supposed to confirm for me? I don't know 'what is supposed to come out' . . . . 1 -L. Wittgenstein A feasible computation uses small resources on an abstract computation device, such as a Turing machine or boolean circuit. Feasible mathematics concerns the study of feasible computations, using combinatorics and logic, as well as the study of feasibly presented mathematical structures such as groups, algebras, and so on. This volume contains contributions to feasible mathematics in three areas: computational complexity theory, proof theory and algebra, with substantial overlap between different fields. In computational complexity theory, the polynomial time hierarchy is characterized without the introduction of runtime bounds by the closure of certain initial functions under safe composition, predicative recursion on notation, and unbounded minimization (S. Bellantoni); an alternative way of looking at NP problems is introduced which focuses on which parameters of the problem are the cause of its computational complexity and completeness, density and separation/collapse results are given for a structure theory for parametrized problems (R. Downey and M. Fellows); new characterizations of PTIME and LINEAR SPACE are given using predicative recurrence over all finite tiers of certain stratified free algebras (D. |
Beschreibung: | 1 Online-Ressource (447p) |
ISBN: | 9781461225669 9781461275824 |
DOI: | 10.1007/978-1-4612-2566-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420047 | ||
003 | DE-604 | ||
005 | 20171106 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461225669 |c Online |9 978-1-4612-2566-9 | ||
020 | |a 9781461275824 |c Print |9 978-1-4612-7582-4 | ||
024 | 7 | |a 10.1007/978-1-4612-2566-9 |2 doi | |
035 | |a (OCoLC)905468177 | ||
035 | |a (DE-599)BVBBV042420047 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 004.0151 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Feasible Mathematics II |c edited by Peter Clote, Jeffrey B. Remmel |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1995 | |
300 | |a 1 Online-Ressource (447p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Computer Science and Applied Logic |v 13 | |
500 | |a Perspicuity is part of proof. If the process by means of which I get a result were not surveyable, I might indeed make a note that this number is what comes out - but what fact is this supposed to confirm for me? I don't know 'what is supposed to come out' . . . . 1 -L. Wittgenstein A feasible computation uses small resources on an abstract computation device, such as a Turing machine or boolean circuit. Feasible mathematics concerns the study of feasible computations, using combinatorics and logic, as well as the study of feasibly presented mathematical structures such as groups, algebras, and so on. This volume contains contributions to feasible mathematics in three areas: computational complexity theory, proof theory and algebra, with substantial overlap between different fields. In computational complexity theory, the polynomial time hierarchy is characterized without the introduction of runtime bounds by the closure of certain initial functions under safe composition, predicative recursion on notation, and unbounded minimization (S. Bellantoni); an alternative way of looking at NP problems is introduced which focuses on which parameters of the problem are the cause of its computational complexity and completeness, density and separation/collapse results are given for a structure theory for parametrized problems (R. Downey and M. Fellows); new characterizations of PTIME and LINEAR SPACE are given using predicative recurrence over all finite tiers of certain stratified free algebras (D. | ||
650 | 4 | |a Computer science | |
650 | 4 | |a Science (General) | |
650 | 4 | |a Information theory | |
650 | 4 | |a Computer Science | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Science, general | |
650 | 4 | |a Informatik | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Computer |0 (DE-588)4070083-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexität |0 (DE-588)4135369-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1992 |z Ithaca NY |2 gnd-content | |
689 | 0 | 0 | |a Computer |0 (DE-588)4070083-5 |D s |
689 | 0 | 1 | |a Komplexität |0 (DE-588)4135369-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Clote, Peter |4 edt | |
700 | 1 | |a Remmel, Jeffrey B. |4 edt | |
830 | 0 | |a Progress in Computer Science and Applied Logic |v 13 |w (DE-604)BV004157568 |9 13 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2566-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855464 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091443916800 |
---|---|
any_adam_object | |
author2 | Clote, Peter Remmel, Jeffrey B. |
author2_role | edt edt |
author2_variant | p c pc j b r jb jbr |
author_facet | Clote, Peter Remmel, Jeffrey B. |
building | Verbundindex |
bvnumber | BV042420047 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905468177 (DE-599)BVBBV042420047 |
dewey-full | 004.0151 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.0151 |
dewey-search | 004.0151 |
dewey-sort | 14.0151 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4612-2566-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03576nmm a2200577zcb4500</leader><controlfield tag="001">BV042420047</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171106 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461225669</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2566-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461275824</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7582-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2566-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905468177</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420047</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feasible Mathematics II</subfield><subfield code="c">edited by Peter Clote, Jeffrey B. Remmel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (447p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Computer Science and Applied Logic</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Perspicuity is part of proof. If the process by means of which I get a result were not surveyable, I might indeed make a note that this number is what comes out - but what fact is this supposed to confirm for me? I don't know 'what is supposed to come out' . . . . 1 -L. Wittgenstein A feasible computation uses small resources on an abstract computation device, such as a Turing machine or boolean circuit. Feasible mathematics concerns the study of feasible computations, using combinatorics and logic, as well as the study of feasibly presented mathematical structures such as groups, algebras, and so on. This volume contains contributions to feasible mathematics in three areas: computational complexity theory, proof theory and algebra, with substantial overlap between different fields. In computational complexity theory, the polynomial time hierarchy is characterized without the introduction of runtime bounds by the closure of certain initial functions under safe composition, predicative recursion on notation, and unbounded minimization (S. Bellantoni); an alternative way of looking at NP problems is introduced which focuses on which parameters of the problem are the cause of its computational complexity and completeness, density and separation/collapse results are given for a structure theory for parametrized problems (R. Downey and M. Fellows); new characterizations of PTIME and LINEAR SPACE are given using predicative recurrence over all finite tiers of certain stratified free algebras (D.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexität</subfield><subfield code="0">(DE-588)4135369-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1992</subfield><subfield code="z">Ithaca NY</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexität</subfield><subfield code="0">(DE-588)4135369-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clote, Peter</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remmel, Jeffrey B.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Computer Science and Applied Logic</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV004157568</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2566-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855464</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1992 Ithaca NY gnd-content |
genre_facet | Konferenzschrift 1992 Ithaca NY |
id | DE-604.BV042420047 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461225669 9781461275824 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855464 |
oclc_num | 905468177 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (447p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Computer Science and Applied Logic |
series2 | Progress in Computer Science and Applied Logic |
spelling | Feasible Mathematics II edited by Peter Clote, Jeffrey B. Remmel Boston, MA Birkhäuser Boston 1995 1 Online-Ressource (447p) txt rdacontent c rdamedia cr rdacarrier Progress in Computer Science and Applied Logic 13 Perspicuity is part of proof. If the process by means of which I get a result were not surveyable, I might indeed make a note that this number is what comes out - but what fact is this supposed to confirm for me? I don't know 'what is supposed to come out' . . . . 1 -L. Wittgenstein A feasible computation uses small resources on an abstract computation device, such as a Turing machine or boolean circuit. Feasible mathematics concerns the study of feasible computations, using combinatorics and logic, as well as the study of feasibly presented mathematical structures such as groups, algebras, and so on. This volume contains contributions to feasible mathematics in three areas: computational complexity theory, proof theory and algebra, with substantial overlap between different fields. In computational complexity theory, the polynomial time hierarchy is characterized without the introduction of runtime bounds by the closure of certain initial functions under safe composition, predicative recursion on notation, and unbounded minimization (S. Bellantoni); an alternative way of looking at NP problems is introduced which focuses on which parameters of the problem are the cause of its computational complexity and completeness, density and separation/collapse results are given for a structure theory for parametrized problems (R. Downey and M. Fellows); new characterizations of PTIME and LINEAR SPACE are given using predicative recurrence over all finite tiers of certain stratified free algebras (D. Computer science Science (General) Information theory Computer Science Theory of Computation Science, general Informatik Naturwissenschaft Computer (DE-588)4070083-5 gnd rswk-swf Komplexität (DE-588)4135369-9 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1992 Ithaca NY gnd-content Computer (DE-588)4070083-5 s Komplexität (DE-588)4135369-9 s 2\p DE-604 Clote, Peter edt Remmel, Jeffrey B. edt Progress in Computer Science and Applied Logic 13 (DE-604)BV004157568 13 https://doi.org/10.1007/978-1-4612-2566-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Feasible Mathematics II Progress in Computer Science and Applied Logic Computer science Science (General) Information theory Computer Science Theory of Computation Science, general Informatik Naturwissenschaft Computer (DE-588)4070083-5 gnd Komplexität (DE-588)4135369-9 gnd |
subject_GND | (DE-588)4070083-5 (DE-588)4135369-9 (DE-588)1071861417 |
title | Feasible Mathematics II |
title_auth | Feasible Mathematics II |
title_exact_search | Feasible Mathematics II |
title_full | Feasible Mathematics II edited by Peter Clote, Jeffrey B. Remmel |
title_fullStr | Feasible Mathematics II edited by Peter Clote, Jeffrey B. Remmel |
title_full_unstemmed | Feasible Mathematics II edited by Peter Clote, Jeffrey B. Remmel |
title_short | Feasible Mathematics II |
title_sort | feasible mathematics ii |
topic | Computer science Science (General) Information theory Computer Science Theory of Computation Science, general Informatik Naturwissenschaft Computer (DE-588)4070083-5 gnd Komplexität (DE-588)4135369-9 gnd |
topic_facet | Computer science Science (General) Information theory Computer Science Theory of Computation Science, general Informatik Naturwissenschaft Computer Komplexität Konferenzschrift 1992 Ithaca NY |
url | https://doi.org/10.1007/978-1-4612-2566-9 |
volume_link | (DE-604)BV004157568 |
work_keys_str_mv | AT clotepeter feasiblemathematicsii AT remmeljeffreyb feasiblemathematicsii |