Compactification of Symmetric Spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1998
|
Schriftenreihe: | Progress in Mathematics
156 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view. Key features: * definition and detailed analysis of the Martin compactifications * new geometric Compactification, defined in terms of the Tits building, that coincides with the Martin Compactification at the bottom of the positive spectrum. * geometric, non-inductive, description of the Karpelevic Compactification * study of the well-know isomorphism between the Satake compactifications and the Furstenberg compactifications * systematic and clear progression of topics from geometry to analysis, and finally to random walks The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate students |
Beschreibung: | 1 Online-Ressource (XIV, 284p) |
ISBN: | 9781461224525 9781461275428 |
DOI: | 10.1007/978-1-4612-2452-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420032 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461224525 |c Online |9 978-1-4612-2452-5 | ||
020 | |a 9781461275428 |c Print |9 978-1-4612-7542-8 | ||
024 | 7 | |a 10.1007/978-1-4612-2452-5 |2 doi | |
035 | |a (OCoLC)879624669 | ||
035 | |a (DE-599)BVBBV042420032 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Guivarc’h, Yves |e Verfasser |4 aut | |
245 | 1 | 0 | |a Compactification of Symmetric Spaces |c by Yves Guivarc’h, Lizhen Ji, J. C. Taylor |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1998 | |
300 | |a 1 Online-Ressource (XIV, 284p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 156 | |
500 | |a The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view. Key features: * definition and detailed analysis of the Martin compactifications * new geometric Compactification, defined in terms of the Tits building, that coincides with the Martin Compactification at the bottom of the positive spectrum. * geometric, non-inductive, description of the Karpelevic Compactification * study of the well-know isomorphism between the Satake compactifications and the Furstenberg compactifications * systematic and clear progression of topics from geometry to analysis, and finally to random walks The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate students | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topology | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Ji, Lizhen |e Sonstige |4 oth | |
700 | 1 | |a Taylor, J. C. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2452-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855449 |
Datensatz im Suchindex
_version_ | 1804153091436576768 |
---|---|
any_adam_object | |
author | Guivarc’h, Yves |
author_facet | Guivarc’h, Yves |
author_role | aut |
author_sort | Guivarc’h, Yves |
author_variant | y g yg |
building | Verbundindex |
bvnumber | BV042420032 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624669 (DE-599)BVBBV042420032 |
dewey-full | 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514 |
dewey-search | 514 |
dewey-sort | 3514 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2452-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02531nmm a2200421zcb4500</leader><controlfield tag="001">BV042420032</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461224525</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2452-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461275428</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7542-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2452-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420032</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guivarc’h, Yves</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compactification of Symmetric Spaces</subfield><subfield code="c">by Yves Guivarc’h, Lizhen Ji, J. C. Taylor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 284p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">156</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view. Key features: * definition and detailed analysis of the Martin compactifications * new geometric Compactification, defined in terms of the Tits building, that coincides with the Martin Compactification at the bottom of the positive spectrum. * geometric, non-inductive, description of the Karpelevic Compactification * study of the well-know isomorphism between the Satake compactifications and the Furstenberg compactifications * systematic and clear progression of topics from geometry to analysis, and finally to random walks The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Lizhen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, J. C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2452-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855449</subfield></datafield></record></collection> |
id | DE-604.BV042420032 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461224525 9781461275428 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855449 |
oclc_num | 879624669 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 284p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Guivarc’h, Yves Verfasser aut Compactification of Symmetric Spaces by Yves Guivarc’h, Lizhen Ji, J. C. Taylor Boston, MA Birkhäuser Boston 1998 1 Online-Ressource (XIV, 284p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 156 The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view. Key features: * definition and detailed analysis of the Martin compactifications * new geometric Compactification, defined in terms of the Tits building, that coincides with the Martin Compactification at the bottom of the positive spectrum. * geometric, non-inductive, description of the Karpelevic Compactification * study of the well-know isomorphism between the Satake compactifications and the Furstenberg compactifications * systematic and clear progression of topics from geometry to analysis, and finally to random walks The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate students Mathematics Topology Mathematik Ji, Lizhen Sonstige oth Taylor, J. C. Sonstige oth https://doi.org/10.1007/978-1-4612-2452-5 Verlag Volltext |
spellingShingle | Guivarc’h, Yves Compactification of Symmetric Spaces Mathematics Topology Mathematik |
title | Compactification of Symmetric Spaces |
title_auth | Compactification of Symmetric Spaces |
title_exact_search | Compactification of Symmetric Spaces |
title_full | Compactification of Symmetric Spaces by Yves Guivarc’h, Lizhen Ji, J. C. Taylor |
title_fullStr | Compactification of Symmetric Spaces by Yves Guivarc’h, Lizhen Ji, J. C. Taylor |
title_full_unstemmed | Compactification of Symmetric Spaces by Yves Guivarc’h, Lizhen Ji, J. C. Taylor |
title_short | Compactification of Symmetric Spaces |
title_sort | compactification of symmetric spaces |
topic | Mathematics Topology Mathematik |
topic_facet | Mathematics Topology Mathematik |
url | https://doi.org/10.1007/978-1-4612-2452-5 |
work_keys_str_mv | AT guivarchyves compactificationofsymmetricspaces AT jilizhen compactificationofsymmetricspaces AT taylorjc compactificationofsymmetricspaces |