Stochastic Modelling in Physical Oceanography:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1996
|
Schriftenreihe: | Progress in Probability
39 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all |
Beschreibung: | 1 Online-Ressource (466p) |
ISBN: | 9781461224303 9781461275336 |
DOI: | 10.1007/978-1-4612-2430-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420025 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461224303 |c Online |9 978-1-4612-2430-3 | ||
020 | |a 9781461275336 |c Print |9 978-1-4612-7533-6 | ||
024 | 7 | |a 10.1007/978-1-4612-2430-3 |2 doi | |
035 | |a (OCoLC)863757522 | ||
035 | |a (DE-599)BVBBV042420025 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Adler, Robert J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Modelling in Physical Oceanography |c edited by Robert J. Adler, Peter Müller, Boris L. Rozovskii |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1996 | |
300 | |a 1 Online-Ressource (466p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Probability |v 39 | |
500 | |a The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geography | |
650 | 4 | |a Oceanography | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Earth Sciences, general | |
650 | 4 | |a Geografie | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Meereskunde |0 (DE-588)4074685-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Meereskunde |0 (DE-588)4074685-9 |D s |
689 | 0 | 1 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Müller, Peter |e Sonstige |4 oth | |
700 | 1 | |a Rozovskii, Boris L. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2430-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855442 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091412459520 |
---|---|
any_adam_object | |
author | Adler, Robert J. |
author_facet | Adler, Robert J. |
author_role | aut |
author_sort | Adler, Robert J. |
author_variant | r j a rj rja |
building | Verbundindex |
bvnumber | BV042420025 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863757522 (DE-599)BVBBV042420025 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2430-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03130nmm a2200577zcb4500</leader><controlfield tag="001">BV042420025</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461224303</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2430-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461275336</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7533-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2430-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863757522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420025</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adler, Robert J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Modelling in Physical Oceanography</subfield><subfield code="c">edited by Robert J. Adler, Peter Müller, Boris L. Rozovskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (466p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Probability</subfield><subfield code="v">39</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oceanography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geografie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meereskunde</subfield><subfield code="0">(DE-588)4074685-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Meereskunde</subfield><subfield code="0">(DE-588)4074685-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, Peter</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rozovskii, Boris L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2430-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855442</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042420025 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461224303 9781461275336 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855442 |
oclc_num | 863757522 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (466p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Probability |
spelling | Adler, Robert J. Verfasser aut Stochastic Modelling in Physical Oceanography edited by Robert J. Adler, Peter Müller, Boris L. Rozovskii Boston, MA Birkhäuser Boston 1996 1 Online-Ressource (466p) txt rdacontent c rdamedia cr rdacarrier Progress in Probability 39 The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all Mathematics Geography Oceanography Distribution (Probability theory) Probability Theory and Stochastic Processes Earth Sciences, general Geografie Mathematik Meereskunde (DE-588)4074685-9 gnd rswk-swf Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Meereskunde (DE-588)4074685-9 s Stochastisches Modell (DE-588)4057633-4 s 2\p DE-604 Müller, Peter Sonstige oth Rozovskii, Boris L. Sonstige oth https://doi.org/10.1007/978-1-4612-2430-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Adler, Robert J. Stochastic Modelling in Physical Oceanography Mathematics Geography Oceanography Distribution (Probability theory) Probability Theory and Stochastic Processes Earth Sciences, general Geografie Mathematik Meereskunde (DE-588)4074685-9 gnd Stochastisches Modell (DE-588)4057633-4 gnd |
subject_GND | (DE-588)4074685-9 (DE-588)4057633-4 (DE-588)4143413-4 |
title | Stochastic Modelling in Physical Oceanography |
title_auth | Stochastic Modelling in Physical Oceanography |
title_exact_search | Stochastic Modelling in Physical Oceanography |
title_full | Stochastic Modelling in Physical Oceanography edited by Robert J. Adler, Peter Müller, Boris L. Rozovskii |
title_fullStr | Stochastic Modelling in Physical Oceanography edited by Robert J. Adler, Peter Müller, Boris L. Rozovskii |
title_full_unstemmed | Stochastic Modelling in Physical Oceanography edited by Robert J. Adler, Peter Müller, Boris L. Rozovskii |
title_short | Stochastic Modelling in Physical Oceanography |
title_sort | stochastic modelling in physical oceanography |
topic | Mathematics Geography Oceanography Distribution (Probability theory) Probability Theory and Stochastic Processes Earth Sciences, general Geografie Mathematik Meereskunde (DE-588)4074685-9 gnd Stochastisches Modell (DE-588)4057633-4 gnd |
topic_facet | Mathematics Geography Oceanography Distribution (Probability theory) Probability Theory and Stochastic Processes Earth Sciences, general Geografie Mathematik Meereskunde Stochastisches Modell Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4612-2430-3 |
work_keys_str_mv | AT adlerrobertj stochasticmodellinginphysicaloceanography AT mullerpeter stochasticmodellinginphysicaloceanography AT rozovskiiborisl stochasticmodellinginphysicaloceanography |