Fatou Type Theorems: Maximal Functions and Approach Regions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1998
|
Schriftenreihe: | Progress in Mathematics
147 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A basic principle governing the boundary behaviour of holomorphic functions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions admit a boundary limit, if we approach the boundary point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean halfspaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of holomorphic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones |
Beschreibung: | 1 Online-Ressource (XII, 154 p) |
ISBN: | 9781461223108 9781461274964 |
DOI: | 10.1007/978-1-4612-2310-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420012 | ||
003 | DE-604 | ||
005 | 20180109 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461223108 |c Online |9 978-1-4612-2310-8 | ||
020 | |a 9781461274964 |c Print |9 978-1-4612-7496-4 | ||
024 | 7 | |a 10.1007/978-1-4612-2310-8 |2 doi | |
035 | |a (OCoLC)879624694 | ||
035 | |a (DE-599)BVBBV042420012 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.9 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Biase, Fausto |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fatou Type Theorems |b Maximal Functions and Approach Regions |c by Fausto Biase |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1998 | |
300 | |a 1 Online-Ressource (XII, 154 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 147 | |
500 | |a A basic principle governing the boundary behaviour of holomorphic functions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions admit a boundary limit, if we approach the boundary point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean halfspaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of holomorphic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Analysis | |
650 | 4 | |a Several Complex Variables and Analytic Spaces | |
650 | 4 | |a Mathematik | |
830 | 0 | |a Progress in Mathematics |v 147 |w (DE-604)BV000004120 |9 147 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2310-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855429 |
Datensatz im Suchindex
_version_ | 1804153091373662208 |
---|---|
any_adam_object | |
author | Biase, Fausto |
author_facet | Biase, Fausto |
author_role | aut |
author_sort | Biase, Fausto |
author_variant | f b fb |
building | Verbundindex |
bvnumber | BV042420012 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624694 (DE-599)BVBBV042420012 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2310-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03019nmm a2200469zcb4500</leader><controlfield tag="001">BV042420012</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180109 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461223108</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2310-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461274964</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7496-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2310-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420012</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biase, Fausto</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fatou Type Theorems</subfield><subfield code="b">Maximal Functions and Approach Regions</subfield><subfield code="c">by Fausto Biase</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 154 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">147</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A basic principle governing the boundary behaviour of holomorphic functions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions admit a boundary limit, if we approach the boundary point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean halfspaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of holomorphic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Several Complex Variables and Analytic Spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">147</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">147</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2310-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855429</subfield></datafield></record></collection> |
id | DE-604.BV042420012 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461223108 9781461274964 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855429 |
oclc_num | 879624694 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 154 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Biase, Fausto Verfasser aut Fatou Type Theorems Maximal Functions and Approach Regions by Fausto Biase Boston, MA Birkhäuser Boston 1998 1 Online-Ressource (XII, 154 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 147 A basic principle governing the boundary behaviour of holomorphic functions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions admit a boundary limit, if we approach the boundary point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean halfspaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of holomorphic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones Mathematics Global analysis (Mathematics) Functions of complex variables Differential equations, partial Functions of a Complex Variable Analysis Several Complex Variables and Analytic Spaces Mathematik Progress in Mathematics 147 (DE-604)BV000004120 147 https://doi.org/10.1007/978-1-4612-2310-8 Verlag Volltext |
spellingShingle | Biase, Fausto Fatou Type Theorems Maximal Functions and Approach Regions Progress in Mathematics Mathematics Global analysis (Mathematics) Functions of complex variables Differential equations, partial Functions of a Complex Variable Analysis Several Complex Variables and Analytic Spaces Mathematik |
title | Fatou Type Theorems Maximal Functions and Approach Regions |
title_auth | Fatou Type Theorems Maximal Functions and Approach Regions |
title_exact_search | Fatou Type Theorems Maximal Functions and Approach Regions |
title_full | Fatou Type Theorems Maximal Functions and Approach Regions by Fausto Biase |
title_fullStr | Fatou Type Theorems Maximal Functions and Approach Regions by Fausto Biase |
title_full_unstemmed | Fatou Type Theorems Maximal Functions and Approach Regions by Fausto Biase |
title_short | Fatou Type Theorems |
title_sort | fatou type theorems maximal functions and approach regions |
title_sub | Maximal Functions and Approach Regions |
topic | Mathematics Global analysis (Mathematics) Functions of complex variables Differential equations, partial Functions of a Complex Variable Analysis Several Complex Variables and Analytic Spaces Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Functions of complex variables Differential equations, partial Functions of a Complex Variable Analysis Several Complex Variables and Analytic Spaces Mathematik |
url | https://doi.org/10.1007/978-1-4612-2310-8 |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT biasefausto fatoutypetheoremsmaximalfunctionsandapproachregions |