Mathematical Olympiad Challenges:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2000
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Mathematical Olympiad Challenges is a rich collection of problems put together by two experienced and well-known professors and coaches of the U.S. International Mathematical Olympiad Team. Hundreds of beautiful, challenging, and instructive problems from algebra, geometry, trigonometry, combinatorics, and number theory were selected from numerous mathematical competitions and journals. An important feature of the work is the comprehensive background material provided with each grouping of problems. The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-ended problems. Aimed at motivated high school and beginning college students and instructors, this work can be used as a text for advanced problem- solving courses, for self-study, or as a resource for teachers and students training for mathematical competitions and for teacher professional development, seminars, and workshops |
Beschreibung: | 1 Online-Ressource (XVII, 260p. 85 illus) |
ISBN: | 9781461221388 9780817641559 |
DOI: | 10.1007/978-1-4612-2138-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419989 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461221388 |c Online |9 978-1-4612-2138-8 | ||
020 | |a 9780817641559 |c Print |9 978-0-8176-4155-9 | ||
024 | 7 | |a 10.1007/978-1-4612-2138-8 |2 doi | |
035 | |a (OCoLC)863776865 | ||
035 | |a (DE-599)BVBBV042419989 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Andreescu, Titu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical Olympiad Challenges |c by Titu Andreescu, Răzvan Gelca |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2000 | |
300 | |a 1 Online-Ressource (XVII, 260p. 85 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Mathematical Olympiad Challenges is a rich collection of problems put together by two experienced and well-known professors and coaches of the U.S. International Mathematical Olympiad Team. Hundreds of beautiful, challenging, and instructive problems from algebra, geometry, trigonometry, combinatorics, and number theory were selected from numerous mathematical competitions and journals. An important feature of the work is the comprehensive background material provided with each grouping of problems. The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-ended problems. Aimed at motivated high school and beginning college students and instructors, this work can be used as a text for advanced problem- solving courses, for self-study, or as a resource for teachers and students training for mathematical competitions and for teacher professional development, seminars, and workshops | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Geometry | |
650 | 4 | |a Number theory | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Gelca, Răzvan |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2138-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855406 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091322281984 |
---|---|
any_adam_object | |
author | Andreescu, Titu |
author_facet | Andreescu, Titu |
author_role | aut |
author_sort | Andreescu, Titu |
author_variant | t a ta |
building | Verbundindex |
bvnumber | BV042419989 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863776865 (DE-599)BVBBV042419989 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2138-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03093nmm a2200517zc 4500</leader><controlfield tag="001">BV042419989</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461221388</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2138-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817641559</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-4155-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2138-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863776865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419989</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andreescu, Titu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Olympiad Challenges</subfield><subfield code="c">by Titu Andreescu, Răzvan Gelca</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 260p. 85 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mathematical Olympiad Challenges is a rich collection of problems put together by two experienced and well-known professors and coaches of the U.S. International Mathematical Olympiad Team. Hundreds of beautiful, challenging, and instructive problems from algebra, geometry, trigonometry, combinatorics, and number theory were selected from numerous mathematical competitions and journals. An important feature of the work is the comprehensive background material provided with each grouping of problems. The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-ended problems. Aimed at motivated high school and beginning college students and instructors, this work can be used as a text for advanced problem- solving courses, for self-study, or as a resource for teachers and students training for mathematical competitions and for teacher professional development, seminars, and workshops</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gelca, Răzvan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2138-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855406</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Aufgabensammlung |
id | DE-604.BV042419989 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461221388 9780817641559 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855406 |
oclc_num | 863776865 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 260p. 85 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Andreescu, Titu Verfasser aut Mathematical Olympiad Challenges by Titu Andreescu, Răzvan Gelca Boston, MA Birkhäuser Boston 2000 1 Online-Ressource (XVII, 260p. 85 illus) txt rdacontent c rdamedia cr rdacarrier Mathematical Olympiad Challenges is a rich collection of problems put together by two experienced and well-known professors and coaches of the U.S. International Mathematical Olympiad Team. Hundreds of beautiful, challenging, and instructive problems from algebra, geometry, trigonometry, combinatorics, and number theory were selected from numerous mathematical competitions and journals. An important feature of the work is the comprehensive background material provided with each grouping of problems. The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-ended problems. Aimed at motivated high school and beginning college students and instructors, this work can be used as a text for advanced problem- solving courses, for self-study, or as a resource for teachers and students training for mathematical competitions and for teacher professional development, seminars, and workshops Mathematics Algebra Geometry Number theory Mathematics, general Number Theory Mathematik Mathematik (DE-588)4037944-9 gnd rswk-swf 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content Mathematik (DE-588)4037944-9 s 2\p DE-604 Gelca, Răzvan Sonstige oth https://doi.org/10.1007/978-1-4612-2138-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Andreescu, Titu Mathematical Olympiad Challenges Mathematics Algebra Geometry Number theory Mathematics, general Number Theory Mathematik Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4143389-0 |
title | Mathematical Olympiad Challenges |
title_auth | Mathematical Olympiad Challenges |
title_exact_search | Mathematical Olympiad Challenges |
title_full | Mathematical Olympiad Challenges by Titu Andreescu, Răzvan Gelca |
title_fullStr | Mathematical Olympiad Challenges by Titu Andreescu, Răzvan Gelca |
title_full_unstemmed | Mathematical Olympiad Challenges by Titu Andreescu, Răzvan Gelca |
title_short | Mathematical Olympiad Challenges |
title_sort | mathematical olympiad challenges |
topic | Mathematics Algebra Geometry Number theory Mathematics, general Number Theory Mathematik Mathematik (DE-588)4037944-9 gnd |
topic_facet | Mathematics Algebra Geometry Number theory Mathematics, general Number Theory Mathematik Aufgabensammlung |
url | https://doi.org/10.1007/978-1-4612-2138-8 |
work_keys_str_mv | AT andreescutitu mathematicalolympiadchallenges AT gelcarazvan mathematicalolympiadchallenges |