Geometry of Curves and Surfaces with MAPLE:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2000
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource or self-study reference. With over 100 stimulating exercises, problems and solutions, {\it Geometry of Curves and Surfaces with Maple} will integrate traditional differential and non- Euclidean geometries with more current computer algebra systems in a practical and user-friendly format |
Beschreibung: | 1 Online-Ressource (X, 310p. 391 illus) |
ISBN: | 9781461221289 9781461274254 |
DOI: | 10.1007/978-1-4612-2128-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419986 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461221289 |c Online |9 978-1-4612-2128-9 | ||
020 | |a 9781461274254 |c Print |9 978-1-4612-7425-4 | ||
024 | 7 | |a 10.1007/978-1-4612-2128-9 |2 doi | |
035 | |a (OCoLC)1184439000 | ||
035 | |a (DE-599)BVBBV042419986 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rovenski, Vladimir |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of Curves and Surfaces with MAPLE |c by Vladimir Rovenski |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2000 | |
300 | |a 1 Online-Ressource (X, 310p. 391 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource or self-study reference. With over 100 stimulating exercises, problems and solutions, {\it Geometry of Curves and Surfaces with Maple} will integrate traditional differential and non- Euclidean geometries with more current computer algebra systems in a practical and user-friendly format | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Computer graphics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Geometry | |
650 | 4 | |a Simulation and Modeling | |
650 | 4 | |a Computer Graphics | |
650 | 4 | |a Computer Applications | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Maple V |0 (DE-588)4276266-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Maple V |0 (DE-588)4276266-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2128-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855403 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091312844800 |
---|---|
any_adam_object | |
author | Rovenski, Vladimir |
author_facet | Rovenski, Vladimir |
author_role | aut |
author_sort | Rovenski, Vladimir |
author_variant | v r vr |
building | Verbundindex |
bvnumber | BV042419986 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184439000 (DE-599)BVBBV042419986 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2128-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03098nmm a2200541zc 4500</leader><controlfield tag="001">BV042419986</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461221289</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2128-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461274254</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7425-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2128-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184439000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rovenski, Vladimir</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of Curves and Surfaces with MAPLE</subfield><subfield code="c">by Vladimir Rovenski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 310p. 391 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource or self-study reference. With over 100 stimulating exercises, problems and solutions, {\it Geometry of Curves and Surfaces with Maple} will integrate traditional differential and non- Euclidean geometries with more current computer algebra systems in a practical and user-friendly format</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation and Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maple V</subfield><subfield code="0">(DE-588)4276266-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maple V</subfield><subfield code="0">(DE-588)4276266-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2128-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855403</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419986 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461221289 9781461274254 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855403 |
oclc_num | 1184439000 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 310p. 391 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Rovenski, Vladimir Verfasser aut Geometry of Curves and Surfaces with MAPLE by Vladimir Rovenski Boston, MA Birkhäuser Boston 2000 1 Online-Ressource (X, 310p. 391 illus) txt rdacontent c rdamedia cr rdacarrier This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource or self-study reference. With over 100 stimulating exercises, problems and solutions, {\it Geometry of Curves and Surfaces with Maple} will integrate traditional differential and non- Euclidean geometries with more current computer algebra systems in a practical and user-friendly format Mathematics Computer simulation Computer graphics Computer science Geometry Simulation and Modeling Computer Graphics Computer Applications Informatik Mathematik Maple V (DE-588)4276266-2 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Maple V (DE-588)4276266-2 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-2128-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rovenski, Vladimir Geometry of Curves and Surfaces with MAPLE Mathematics Computer simulation Computer graphics Computer science Geometry Simulation and Modeling Computer Graphics Computer Applications Informatik Mathematik Maple V (DE-588)4276266-2 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4276266-2 (DE-588)4012248-7 |
title | Geometry of Curves and Surfaces with MAPLE |
title_auth | Geometry of Curves and Surfaces with MAPLE |
title_exact_search | Geometry of Curves and Surfaces with MAPLE |
title_full | Geometry of Curves and Surfaces with MAPLE by Vladimir Rovenski |
title_fullStr | Geometry of Curves and Surfaces with MAPLE by Vladimir Rovenski |
title_full_unstemmed | Geometry of Curves and Surfaces with MAPLE by Vladimir Rovenski |
title_short | Geometry of Curves and Surfaces with MAPLE |
title_sort | geometry of curves and surfaces with maple |
topic | Mathematics Computer simulation Computer graphics Computer science Geometry Simulation and Modeling Computer Graphics Computer Applications Informatik Mathematik Maple V (DE-588)4276266-2 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Mathematics Computer simulation Computer graphics Computer science Geometry Simulation and Modeling Computer Graphics Computer Applications Informatik Mathematik Maple V Differentialgeometrie |
url | https://doi.org/10.1007/978-1-4612-2128-9 |
work_keys_str_mv | AT rovenskivladimir geometryofcurvesandsurfaceswithmaple |