The Non-Euclidean Revolution: With an Introduction by H.S.M Coxeter
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2001
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | How unique and definitive is Euclidean geometry in describing the "real" space in which we live? Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. Trudeau writes in a lively, entertaining, and highly accessible style. His book provides one of the most stimulating and personal presentations of a struggle with the nature of truth in mathematics and the physical world. A portion of the book won the Pólya Prize, a distinguished award from the Mathematical Association of America |
Beschreibung: | 1 Online-Ressource (XIV, 270p. 257 illus) |
ISBN: | 9781461221029 9780817642372 |
DOI: | 10.1007/978-1-4612-2102-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419983 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461221029 |c Online |9 978-1-4612-2102-9 | ||
020 | |a 9780817642372 |c Print |9 978-0-8176-4237-2 | ||
024 | 7 | |a 10.1007/978-1-4612-2102-9 |2 doi | |
035 | |a (OCoLC)863786872 | ||
035 | |a (DE-599)BVBBV042419983 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Trudeau, Richard J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Non-Euclidean Revolution |b With an Introduction by H.S.M Coxeter |c by Richard J. Trudeau |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2001 | |
300 | |a 1 Online-Ressource (XIV, 270p. 257 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a How unique and definitive is Euclidean geometry in describing the "real" space in which we live? Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. Trudeau writes in a lively, entertaining, and highly accessible style. His book provides one of the most stimulating and personal presentations of a struggle with the nature of truth in mathematics and the physical world. A portion of the book won the Pólya Prize, a distinguished award from the Mathematical Association of America | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a History of Mathematical Sciences | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichteuklidische Geometrie |0 (DE-588)4042073-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichteuklidische Geometrie |0 (DE-588)4042073-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2102-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855400 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091300261888 |
---|---|
any_adam_object | |
author | Trudeau, Richard J. |
author_facet | Trudeau, Richard J. |
author_role | aut |
author_sort | Trudeau, Richard J. |
author_variant | r j t rj rjt |
building | Verbundindex |
bvnumber | BV042419983 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863786872 (DE-599)BVBBV042419983 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2102-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02466nmm a2200457zc 4500</leader><controlfield tag="001">BV042419983</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461221029</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2102-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817642372</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-4237-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2102-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863786872</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419983</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trudeau, Richard J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Non-Euclidean Revolution</subfield><subfield code="b">With an Introduction by H.S.M Coxeter</subfield><subfield code="c">by Richard J. Trudeau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 270p. 257 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">How unique and definitive is Euclidean geometry in describing the "real" space in which we live? Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. Trudeau writes in a lively, entertaining, and highly accessible style. His book provides one of the most stimulating and personal presentations of a struggle with the nature of truth in mathematics and the physical world. A portion of the book won the Pólya Prize, a distinguished award from the Mathematical Association of America</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History of Mathematical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichteuklidische Geometrie</subfield><subfield code="0">(DE-588)4042073-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichteuklidische Geometrie</subfield><subfield code="0">(DE-588)4042073-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2102-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855400</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419983 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461221029 9780817642372 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855400 |
oclc_num | 863786872 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 270p. 257 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Trudeau, Richard J. Verfasser aut The Non-Euclidean Revolution With an Introduction by H.S.M Coxeter by Richard J. Trudeau Boston, MA Birkhäuser Boston 2001 1 Online-Ressource (XIV, 270p. 257 illus) txt rdacontent c rdamedia cr rdacarrier How unique and definitive is Euclidean geometry in describing the "real" space in which we live? Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. Trudeau writes in a lively, entertaining, and highly accessible style. His book provides one of the most stimulating and personal presentations of a struggle with the nature of truth in mathematics and the physical world. A portion of the book won the Pólya Prize, a distinguished award from the Mathematical Association of America Mathematics Geometry Mathematics, general History of Mathematical Sciences Mathematik Nichteuklidische Geometrie (DE-588)4042073-5 gnd rswk-swf Nichteuklidische Geometrie (DE-588)4042073-5 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-2102-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Trudeau, Richard J. The Non-Euclidean Revolution With an Introduction by H.S.M Coxeter Mathematics Geometry Mathematics, general History of Mathematical Sciences Mathematik Nichteuklidische Geometrie (DE-588)4042073-5 gnd |
subject_GND | (DE-588)4042073-5 |
title | The Non-Euclidean Revolution With an Introduction by H.S.M Coxeter |
title_auth | The Non-Euclidean Revolution With an Introduction by H.S.M Coxeter |
title_exact_search | The Non-Euclidean Revolution With an Introduction by H.S.M Coxeter |
title_full | The Non-Euclidean Revolution With an Introduction by H.S.M Coxeter by Richard J. Trudeau |
title_fullStr | The Non-Euclidean Revolution With an Introduction by H.S.M Coxeter by Richard J. Trudeau |
title_full_unstemmed | The Non-Euclidean Revolution With an Introduction by H.S.M Coxeter by Richard J. Trudeau |
title_short | The Non-Euclidean Revolution |
title_sort | the non euclidean revolution with an introduction by h s m coxeter |
title_sub | With an Introduction by H.S.M Coxeter |
topic | Mathematics Geometry Mathematics, general History of Mathematical Sciences Mathematik Nichteuklidische Geometrie (DE-588)4042073-5 gnd |
topic_facet | Mathematics Geometry Mathematics, general History of Mathematical Sciences Mathematik Nichteuklidische Geometrie |
url | https://doi.org/10.1007/978-1-4612-2102-9 |
work_keys_str_mv | AT trudeaurichardj thenoneuclideanrevolutionwithanintroductionbyhsmcoxeter |