Coxeter Matroids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2003
|
Schriftenreihe: | Progress in Mathematics
216 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry. This largely self-contained text provides an intuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group. Key topics and features: * Systematic, clearly written exposition with ample references to current research * Matroids are examined in terms of symmetric and finite reflection groups * Finite reflection groups and Coxeter groups are developed from scratch * The Gelfand-Serganova theorem is presented, allowing for a geometric interpretation of matroids and Coxeter matroids as convex polytopes with certain symmetry properties * Matroid representations in buildings and combinatorial flag varieties are studied in the final chapter * Many exercises throughout * Excellent bibliography and index Accessible to graduate students and research mathematicians alike, "Coxeter Matroids" can be used as an introductory survey, a graduate course text, or a reference volume |
Beschreibung: | 1 Online-Ressource (XXII, 264p. 65 illus) |
ISBN: | 9781461220664 9781461274001 |
DOI: | 10.1007/978-1-4612-2066-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419976 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9781461220664 |c Online |9 978-1-4612-2066-4 | ||
020 | |a 9781461274001 |c Print |9 978-1-4612-7400-1 | ||
024 | 7 | |a 10.1007/978-1-4612-2066-4 |2 doi | |
035 | |a (OCoLC)863720195 | ||
035 | |a (DE-599)BVBBV042419976 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Borovik, Alexandre V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Coxeter Matroids |c by Alexandre V. Borovik, I. M. Gelfand, Neil White |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2003 | |
300 | |a 1 Online-Ressource (XXII, 264p. 65 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 216 | |
500 | |a Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry. This largely self-contained text provides an intuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group. Key topics and features: * Systematic, clearly written exposition with ample references to current research * Matroids are examined in terms of symmetric and finite reflection groups * Finite reflection groups and Coxeter groups are developed from scratch * The Gelfand-Serganova theorem is presented, allowing for a geometric interpretation of matroids and Coxeter matroids as convex polytopes with certain symmetry properties * Matroid representations in buildings and combinatorial flag varieties are studied in the final chapter * Many exercises throughout * Excellent bibliography and index Accessible to graduate students and research mathematicians alike, "Coxeter Matroids" can be used as an introductory survey, a graduate course text, or a reference volume | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Gelfand, I. M. |e Sonstige |4 oth | |
700 | 1 | |a White, Neil |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2066-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855393 |
Datensatz im Suchindex
_version_ | 1804153091291873280 |
---|---|
any_adam_object | |
author | Borovik, Alexandre V. |
author_facet | Borovik, Alexandre V. |
author_role | aut |
author_sort | Borovik, Alexandre V. |
author_variant | a v b av avb |
building | Verbundindex |
bvnumber | BV042419976 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863720195 (DE-599)BVBBV042419976 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2066-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02543nmm a2200469zcb4500</leader><controlfield tag="001">BV042419976</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461220664</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2066-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461274001</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7400-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2066-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863720195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419976</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borovik, Alexandre V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coxeter Matroids</subfield><subfield code="c">by Alexandre V. Borovik, I. M. Gelfand, Neil White</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 264p. 65 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">216</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry. This largely self-contained text provides an intuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group. Key topics and features: * Systematic, clearly written exposition with ample references to current research * Matroids are examined in terms of symmetric and finite reflection groups * Finite reflection groups and Coxeter groups are developed from scratch * The Gelfand-Serganova theorem is presented, allowing for a geometric interpretation of matroids and Coxeter matroids as convex polytopes with certain symmetry properties * Matroid representations in buildings and combinatorial flag varieties are studied in the final chapter * Many exercises throughout * Excellent bibliography and index Accessible to graduate students and research mathematicians alike, "Coxeter Matroids" can be used as an introductory survey, a graduate course text, or a reference volume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gelfand, I. M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">White, Neil</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2066-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855393</subfield></datafield></record></collection> |
id | DE-604.BV042419976 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461220664 9781461274001 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855393 |
oclc_num | 863720195 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 264p. 65 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Borovik, Alexandre V. Verfasser aut Coxeter Matroids by Alexandre V. Borovik, I. M. Gelfand, Neil White Boston, MA Birkhäuser Boston 2003 1 Online-Ressource (XXII, 264p. 65 illus) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 216 Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry. This largely self-contained text provides an intuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group. Key topics and features: * Systematic, clearly written exposition with ample references to current research * Matroids are examined in terms of symmetric and finite reflection groups * Finite reflection groups and Coxeter groups are developed from scratch * The Gelfand-Serganova theorem is presented, allowing for a geometric interpretation of matroids and Coxeter matroids as convex polytopes with certain symmetry properties * Matroid representations in buildings and combinatorial flag varieties are studied in the final chapter * Many exercises throughout * Excellent bibliography and index Accessible to graduate students and research mathematicians alike, "Coxeter Matroids" can be used as an introductory survey, a graduate course text, or a reference volume Mathematics Algebra Geometry, algebraic Combinatorics Algebraic Geometry Mathematics, general Mathematik Gelfand, I. M. Sonstige oth White, Neil Sonstige oth https://doi.org/10.1007/978-1-4612-2066-4 Verlag Volltext |
spellingShingle | Borovik, Alexandre V. Coxeter Matroids Mathematics Algebra Geometry, algebraic Combinatorics Algebraic Geometry Mathematics, general Mathematik |
title | Coxeter Matroids |
title_auth | Coxeter Matroids |
title_exact_search | Coxeter Matroids |
title_full | Coxeter Matroids by Alexandre V. Borovik, I. M. Gelfand, Neil White |
title_fullStr | Coxeter Matroids by Alexandre V. Borovik, I. M. Gelfand, Neil White |
title_full_unstemmed | Coxeter Matroids by Alexandre V. Borovik, I. M. Gelfand, Neil White |
title_short | Coxeter Matroids |
title_sort | coxeter matroids |
topic | Mathematics Algebra Geometry, algebraic Combinatorics Algebraic Geometry Mathematics, general Mathematik |
topic_facet | Mathematics Algebra Geometry, algebraic Combinatorics Algebraic Geometry Mathematics, general Mathematik |
url | https://doi.org/10.1007/978-1-4612-2066-4 |
work_keys_str_mv | AT borovikalexandrev coxetermatroids AT gelfandim coxetermatroids AT whiteneil coxetermatroids |